В разряде тысяч пятёрка встречается 1000 раз - все числа от 5000 до 5999. В разряде сотен пятёрка встречается 100 раз по 10 (всего 1000) в числах от 500 до 599, от 1500 до 1599, от 2500 до 2599 и т. д. до 9500...9599. В разряде десятков пятёрка встречается 10 раз по 100 (всего 1000) в числах от 50 до 59, от 150 до 159 и т. д. до 9950...9959. В разряде единиц пятёрка встречается 1 раз по 1000 (всего 1000) в числах 5, 15, 25 и т. д. до 9995.
Всего пятёрка встречается 1000 + 1000 + 1000 + 1000 = 4000 раз.
ответ: 4000
Строим границы указанных областей.
у=2х²+4х-1 - парабола, ветви вверх, вершина в точке (-1;-3)
Парабола разбивает плоскость хОу на две части
внутреннюю и внешнюю.
Чтобы узнать какая из этих областей удовлетворяет неравенству, выбираем произвольную точку, например (0;0) и подставляем её координаты в неравенство
0≥-1 - верно.
Значит область, определяемая неравенством у≥ 2х²+4х-1, содержит точку (0;0). Это внутренняя часть параболы.
Строим прямую х+у=2. Она также разбивает плоскость хОу на две полуплоскости.
Область определяемая неравенством х+у≥2 расположена ниже прямой.
Координаты точки (0;0) удовлетворяют неравенству х+у≤2:
0+0≤2 - верно.
Наибольшую длину имеет отрезок АВ, лежащий на прямой х=-1
О т в е т. р=-1