Площадь фигуры может быть вычислена через определённый интеграл.
График функции y=3x² - 2 - квадратная парабола веточками вверх. Вершина параболы находится в точке А(0; -2). Парабола пересекает ось х в двух точках:
х₁ = -√2/3 ≈ -0,816
х₂ = √2/3 ≈ 0,816
Найдём пределы интегрирования
При х = 1 y=3x² - 2 = 1
Эта точка находится правее нуля функции в точке х₂ ≈ 0,816, т.е. в области положительных у, поэтому нижний предел х = 1, ну, а верхний предел, естественно, х = 2.
Примем вклад за 1. Если вклад увеличится на 10%, то он составит по отношению к первоначальному: 100% + 10% = 110% 110% = 1,1 Значит, размер вклада должен стать больше 1,1.
При увеличении вклада на 3%, к концу года вклад составит: 100% + 3% = 103% 103% = 1,03
1 * 1,03 = 1,03 - размер вклада через 1 год. 1,03 * 1,03 = 1,0609 - размер вклада через два года. 1,0609 * 1,03 ≈ 1,093 - размер вклада через три года. 1,093 * 1,03 ≈ 1,126 - размер вклада через четыре года. 1,126 > 1.1 ответ: через четыре года вклад вырастет более чем на 10%.
Площадь фигуры может быть вычислена через определённый интеграл.
График функции y=3x² - 2 - квадратная парабола веточками вверх. Вершина параболы находится в точке А(0; -2). Парабола пересекает ось х в двух точках:
х₁ = -√2/3 ≈ -0,816
х₂ = √2/3 ≈ 0,816
Найдём пределы интегрирования
При х = 1 y=3x² - 2 = 1
Эта точка находится правее нуля функции в точке х₂ ≈ 0,816, т.е. в области положительных у, поэтому нижний предел х = 1, ну, а верхний предел, естественно, х = 2.
Интегрируем: ∫(3x² - 2)dx = x³ - 2x.
Подставляем пределы:
S = (2³ - 2·2) - (1³ - 2·1) = 4+1 = 5
ответ: Площадь фигуры равна 5