для решения данного мы должны выяснить проходит ли график функции через точку с.
график функции
для того, чтобы выяснить проходит ли график функции через точку не обязательно выполнять построение графика. график функции проходит через точку, если координаты этой точки обращают формулу функции в верное числовое равенство. записи, в которых используется знак равно, разделяющий два объекта (два числа, выражения и т. называют равенствами. для того, чтобы выяснить проходит ли график функции через точку нужно:
подставить в формулу функции вместо у ординату точки с.
подставить в формулу функции вместо х абсциссу точки с.
если получится верное числовое равенство, точка лежит на графике.
вычислим принадлежит ли графику функции точка
график функции проходит через точку с, если их координаты обращают формулу y = -2x + 4 в верное числовое равенство. координаты точки с (20; -36), где абсцисса, то есть х =20, а ордината, то есть у = -36. подставим значения в формулу y = -2x + 4.
-36 = -2 * 20 + 4;
-36 = -40 + 4;
-36 = -36.
при умножении отрицательного числа на положительное мы получаем отрицательный результат.
так как обе части равны, значит мы получили верное равенство. следовательно точка с (20; -36) проходит через график функции y = -2x + 4.
Т. к исходный график параллелен прямой у=3х-1 , значит, в исходной формуле к=3, так как график проходит через точку м(2; 1), то можно подставить в формулу у=кх+b вместо х и у значения 2 и 1 соответственно и k=3, получаем: 1=3*2+b 1=6+b b=-5 y=3x-5чертим систему координат, отмечаем положительные направления стрелками вправо и вверх, подписываем оси вправо - х, вверх -у. отмечаем начало координат - точка о и единичные отрезки по каждой оси в 1 клетку. графиком является прямая, для её построения достаточно двух точек, запишем их координаты в таблицу: х= 0 3 у= -5 1 ставим координаты в системе и проводим через них прямую линию. подписываем график у=3х-5.
Т. к исходный график параллелен прямой у=3х-1 , значит, в исходной формуле к=3, так как график проходит через точку м(2; 1), то можно подставить в формулу у=кх+b вместо х и у значения 2 и 1 соответственно и k=3, получаем: 1=3*2+b 1=6+b b=-5 y=3x-5чертим систему координат, отмечаем положительные направления стрелками вправо и вверх, подписываем оси вправо - х, вверх -у. отмечаем начало координат - точка о и единичные отрезки по каждой оси в 1 клетку. графиком является прямая, для её построения достаточно двух точек, запишем их координаты в таблицу: х= 0 3 у= -5 1 ставим координаты в системе и проводим через них прямую линию. подписываем график у=3х-5.
для решения данного мы должны выяснить проходит ли график функции через точку с.
график функции
для того, чтобы выяснить проходит ли график функции через точку не обязательно выполнять построение графика. график функции проходит через точку, если координаты этой точки обращают формулу функции в верное числовое равенство. записи, в которых используется знак равно, разделяющий два объекта (два числа, выражения и т. называют равенствами. для того, чтобы выяснить проходит ли график функции через точку нужно:
подставить в формулу функции вместо у ординату точки с.
подставить в формулу функции вместо х абсциссу точки с.
если получится верное числовое равенство, точка лежит на графике.
вычислим принадлежит ли графику функции точка
график функции проходит через точку с, если их координаты обращают формулу y = -2x + 4 в верное числовое равенство. координаты точки с (20; -36), где абсцисса, то есть х =20, а ордината, то есть у = -36. подставим значения в формулу y = -2x + 4.
-36 = -2 * 20 + 4;
-36 = -40 + 4;
-36 = -36.
при умножении отрицательного числа на положительное мы получаем отрицательный результат.
так как обе части равны, значит мы получили верное равенство. следовательно точка с (20; -36) проходит через график функции y = -2x + 4.