Пусть х - это количество пятирублевых монет. Тогда у - количество рублевых монет. У нас две неизвестные, значит, нам нужно составить систему из двух уравнений, которые отражают условие нашей задачи: х+y=200; 5x+y=800; Я люблю решать методом алгебраического сложения (Х складываем с Х, У складываем с У, числа - с числами). Для этого нам нужно "убрать" одну переменную (т. е., когда мы сложим их, у нас получится ноль. Например: 2у-2у=0). Для этого часто нужно домножить одно, или оба уравнения на какое-либо число. Так и делаем: х+у=200 | * -1. Получается система: -х-у=-200; 5х+у=800. Складываем уравнения: 5х-х+у-у=800-200; 4х=600 Находим Х: х=600/4=150 Теперь одна переменная нам известна. Подставляем в любое из уравнений и находим вторую: 150+у=200; у=200-150=50
Х час - время половины пути от А до В поезда из В (х+1,5) час - время половины пути поезда из А 1 - весь путь 0,5 / х - скорость поезда из В 0,5/ (х+1,5) - скорость поезда из А 1 - 1/10=9/10 - пути проехали за 6 час оба поезда S=V:T (0,5/х +0,5 / (Х+1,5) * 6 = 9/10 3/Х + 3/(Х+1,5) = 9/10 30Х+45 + 30х=9х² + 13,5х 9х² - 46,5 - 45 =0 0,6 х² - 3,1х -3 =0 D = 9,61 + 7,2 =16,81 х = (3,1+4,1)/ 1,2 = 6 (час) - время половины пути поезда из В - 6*2=12 час - время в пути поезда из В 6+1,5 = 7,5 (час) - время половины пути поезда из А 7,5 * 2=15 час - время в пути поезда из А
8/23-1/26=8*26-23*1/23*26-208-23/598=185/598
7/15-7/30=2*7-7/30=7/30
2/19-1/38=2*2-1/38=3/38
5/7-3/14=2*5-3/14=7/14=1/2
4/21-1/7=4-3*1/21=1/21
7/2+11/50=25*7+11/50=186/50=93/25