Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
Объяснение:
1) проверим для n=3
2³=8 ; 2*3+1=7 ; 2³>2*3+1 верно (1)
2) предположим что неравенство верно при n=k (k>3) (2)
3) при n=k+1 проверим выполнение неравенства
2^(k+1)=2*2^k
2(k+1)+1=2k+3
по предположению (2) 2^k>2k+1
умножим обе части на 2
2*2^k>2(2k+1)=4k+2
2*2^k>4k+2
сравним 4k+2 и 2k+3 для этого определим знак их разности
4k+2 - (2k+3)=4k+2-2k-3=2k-3 так как k>3 то 2k>2*3=6
2k>6 и тем более 2k>3 ⇒ 2k-3>0 ⇒ 4k+2 - (2k+3)>0 ⇒ 4k+2 > (2k+3)
так как 2^(k+1)>4+2k и 4+2k>2k+3 и 2k+3=2(k+1)+1
то 2^(k+1)> 2(k+1)+1 то есть неравенство выполняется для n=k+1 (3)
из (1); (2); (3) ⇒ неравенство верно для любого n>3
60 минут (1 час) - 100%
60 хвилин (1 годин.) - 100%
Обьяснение:максимальное количество минут в часе это 60 потому это 100% как максимум
я думаю это немного потому что я не сразу увидела что это алгебра если нет тогда простите я тут первый раз