x
2
−3x+2=0
d=(−3)
2
−4×1×2=9−8=1>0
x1=
2×1
−(−3)−1
=
2
3−1
=
2
3−1
=1
x2=
2
3+1
=
2
4
=2
1) f(x) = x^2 - 6x + 5
D(f) = R
1) Знайдемо проміжки монотоності:
f`(x) = 2x - 6 = 2(x - 3)
f`(x) = 0
2(x - 3) = 0
x = 3
(дивись малюнок)
f(x) спадає якщо х ∈ (-∞; 3) і зростає якщо х ∈ (3; +∞)
2) знайдемо точки екстремума.
х(min) = 3 ⇒ y(min) = 3² - 6 * 3 +5 = 9 - 18 + 5 = -4
точки max не існеє.
2) f(x) = x^4 - 2x^2
D(f) = R
1) Знайдемо проміжки монотоності:
f`(x) = 4x³ - 4х = 4х(x² - 1) = 4х(х - 1)(х + 1)
f`(x) = 0
4х(х - 1)(х + 1) = 0
х = 0, х = 1, х = -1
(дивись малюнок)
f(x) спадає якщо х ∈ (-∞; -1) і (0; 1);
зростає якщо х ∈ (-1; 0) і (1; +∞)
2) знайдемо точки екстремума.
х(min) = -1 ⇒ y(min) = (-1)⁴ - 2 * (-1)² = 1 - 2 = -1
х(min) = 1 ⇒ y(min) = 1⁴ - 2 * 1² = 1 - 2 = -1
х(max) = 0 ⇒ y(max) = 0⁴ - 2 * 0² = 0
Первый путём разложения на множители):
х²-3х+2=0
х²-х-2х+2=0
х(х-1)-2(х-1)=0
(х-1)×(х-2)=0
х-1=0
х-2=0
х=1
х=2
х(под х пишем 1)=1
х(под х пишем 2)=2
Второй метод выделения полного квадрата):
х²-3х+2=0
х²-3х=-2
х=1
х=2
х(под х пишем 1)=1
х(под х пишем 2)=2
Третий по формуле для корней квадратного уравнения):
х²-3х+2=0
Где «+-» это означает «±»
х=2
х=1
х(под х пишем 1)=1
х(под х пишем 2)=2