а) при каком условии неполное квадратное уравнение не имеет корней: напишите общий вид неполного квадратного уравнения, которое имеет два корня и один из них равен 0.
Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.
Такие уравнения решаются разложением левой части уравнения на множители.
\[a{x^2} + bx = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (ax + b) = 0\]
Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:
\[x = 0;ax + b = 0\]
Второе уравнение — линейное. Решаем его:
\[ax = - b\_\_\_\left| {:a} \right.\]
\[x = - \frac{b}{a}\]
Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.
Во-первых определимся с понятием : что такое область определения функции? Область определения функции- это значения аргумента ("х"), при которых значения функции имеют смысл( существуют) Короче говоря, нас спрашивают: какие "х" можно брать, чтобы значение функции можно было вычислить. А мы ведь умные(правда?) и знаем, что: 1) делить на 0 нельзя;2) корень квадратный из отрицательного числа не существуют , ну и т.д. а) у = √(х +3)(9 -х) У нас как раз квадратный корень. А это значит, что (х+3)(9-х) ≥ 0. Решаем это неравенство методом интервалов.Ищем нули множителей. х+3 = 0, ⇒ х = -3 9 -х = 0,⇒ х = 9 -∞ -3 9 +∞ - + + это знаки (х +3) + + - это знаки (9 -х) Это решение неравенства ответ: х∈ [ -3; 9] б) у = (5х³ -2х)/√(х² -11х +28) Рассуждаем аналогично. числитель существует ( можно посчитать значение) при любом "х" в знаменателе стоит квадратный корень. Он существует только при неотрицательных "х", но он стоит в знаменателе (делить на 0 нельзя) Значит, нам предстоит решить неравенство: х² - 11х +28 > 0 По т. Виета ищем корни х₁=4, х₂ = 7 ответ: х∈(-∞; 4)∪(7; +∞)
Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.
Такие уравнения решаются разложением левой части уравнения на множители.
\[a{x^2} + bx = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (ax + b) = 0\]
Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:
\[x = 0;ax + b = 0\]
Второе уравнение — линейное. Решаем его:
\[ax = - b\_\_\_\left| {:a} \right.\]
\[x = - \frac{b}{a}\]
Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.
Примеры.
\[1){x^2} + 18x = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (x + 18) = 0\]
ДОЛЖНО БЫТЬ ПРАВИЛЬНО