1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
1. 2х-9=3 2х=12 х=6 —- х+3б=-106+3б=-103б=-16б=-16/3=-5 и 1/3 (5 целых и одна третья)ответ : -5 1/3 или 5,(3)2. не понятно , отображается криво, проверь ещё раз3. 5|х-4|=135если х> 0 ( больше либо равно нулю), тогда уравнение имеет вид : 5(х-4)=1355х-20=1355х=155х=31если х< 0, уравнение имеет вид: 5(-х-4)=135-5х-20=135-5х=155х=-31ответ: 31; -314. пусть во первом шкафу было х книг, тогда во втором шкафу было 4х книг. составим уравнение с условиями : х+17=4х-25-3х=-42х=14 штук (книг)тогда в первом шкафу было 14 книг, а во втором было 14*4=56 книг.ответ; 1 шкаф 14 книг, а 2 шкаф 56 книг.
Объяснение:
Точки пересечения с осью ОХ - это х = - 3 и х = -1
При записи уравнения и получается
y = (x+3)*(x+1) - ответ - В.