Для острых углов известно соотношение sinα<α<tgα . α=1/(n+6) стремится к 0 при n->∞.
tg1/(n+6)>1/(n+6).
Исходный ряд сравним с рядом ,общий член которого 1/(n+6).Этот ряд расходящийся, так как его можно сравнить с расходящимся обобщённо-гармоническим рядом ∑1/n : lim (1/n)/(1/n+6)=1≠0 при n->∞ ⇒ оба ряда ∑1/n и ∑1/(n+6) расходятся.
Ряд ∑1/(n+6) является минорантным, а ряд ∑tg1/(n+6) мажорантным. Из расходимости минорантного ряда следует расходимость мажорантного. ⇒∑tg1/(n+6) - расходящийся ряд.
а) {x-y-1=0
{x+y-5=0
х=1+у
1+у+у-5=0
2у=4
у=2
х=1+у=1+2
х=3
{x-y-2=0
{x+y-6=0
х=6-у
6-у-у-2=0
-2у=-4
у=2
х=6-у=6-2
х=4
в) {x-y-2=0
{3x-2y-9=0
х=2+у
3(2+у)-2у-9=0
6+3у-2у-9=0
у=3
х=2+у=2+3
х=5
г) {x-2y-3=0
{5x+y-4=0
х=3+2у
5x+y-4=0
5(3+2у)+у-4=0
15+10у+у-4=0
11у=-11
у=-1
х=3+2у=3+2(-1)=3-2
х=1
{x+2y-11=0
{4x-5y+8=0
х=11-2у
4х-5у+8=0
4(11-2у)-5у+8=0
44-8у-5у+8=0
-13у=52
у=-4
х=11-2у=11-2(-4)=11+8
х=19
{x+4y-2=0
{3x+8y-2=0
х=2-4у
3(2-4у)+8у-2=0
6-12у+8у-2=0
-4у=-4
у=1
х=2-4у=2-4*1=2-4
х=-2
6 ; 0.5
Объяснение:
D/4=13^2-12*×4=121=11^2
X1,2=(13+-11)/4
X1=6
X2=1/2