Смотри в решении
Объяснение:
Вариант 1
Всегда будем избавляться от знаменателей путем домножения на наименьший общий знаменатель во всех заданиях
5.
а. 3x<5
x<1 ⅔
б. х>0×8
х>0
в. 4х>=6
х>=1 ⅔
г. 5х<=0
х<=0
6.
а. 2+х<20
х<18
б. 3-х>18
х<-15
в. 1+6х<=7
6х<=6
х<=1
г. 7-2х>=0
2х<=7
Х<=3 ½
Вариант 2.
1.
а. 5х>2
х> 0,4
б. х<0×4
х<0
в. 2х>=27
х>=13,5
г. 4х<=0
х<=0
2.
а. 5+3х<2
3х<-3
х<-1
б. 4-х>=0
х<=4
в. 1-х<20
х>-19
г. 2+5х>=0
5х>=-2
х>=-0,4
1) Заметим, что, если в кучке осталось 2 спички, никому из игроков не выгодно брать из нее спичку, т.к. следующим ходом противник заберет оставшуюся спичку и победит. Тогда, если есть кучка с 1 спичкой, забираем спичку, если же есть спички числом спичек, большим 2, берем спичку из любой.
Если во всех кучках осталось по 2 спички, то было совершено 99*101=9999 ходов, а значит последнюю спичку в данный момент забрал начинающий. Тогда на 10000 ход второй вынужден забрать спичку из кучки с 2 спичками. А дальше игра оканчивается ничьей.
А значит ответ нет.
2) Заметим, что искомая сумма
.
И правда. Пусть
- сумма всех комбинаций по 1 ... по k элементов. Тогда 
Т.к. числа отрицательны, то
Если хотя бы одно из
, вся сумма равна -1.
В остальных случаях
- всегда отрицательное. Но произведение 10 целых отрицательных чисел положительно, причем не меньше 1. Противоречие с тем, что
.
А тогда сумма могла равняться только -1