М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
flillen
flillen
03.08.2020 19:50 •  Алгебра

При каких значениях a и b многочлен m(x) делится без остатка на многочлен:
20 ​

👇
Ответ:
киса822
киса822
03.08.2020

M(x) = x^4 + 2x^3 + ax^2 + bx + 72

N(x) = x^2 - 5x + 6 = (x - 2)(x - 3)

если один многочлен делится без остатка на другой, то корни одного многочлена, являются корнями делимого многочлена

корни второго 2 и 3

значит и корни первого 2 и 3

2^4 + 2*2^3 + a*2^2 + b*2 + 72 = 0

16 + 16 + 4a + 2b + 72 = 0

2a + b = -52

3^4 + 2*3^3 + a*3^2 + b*3 + 72 = 0

81 + 54 + 9a + 3b + 72 = 0

3a + b = - 69

3a + b - 2a - b = -69 + 52

a = -17

2*(-17) + b = -52

b = -18

ответ a=-17  b=-18

ну можно в столбик разделить, зная что если первый многочлен x^2 -5x + 7 то второй будет (смотрим на первый и свободный члены) типа x^2 + cx + 7 и найти эту c

4,8(34 оценок)
Открыть все ответы
Ответ:
Настя528858
Настя528858
03.08.2020
Очевидно что все х1, х2, х3, х4 одновременно отрицательными быть не могут, тогда в левой части было отрицательное число.

очевидно что ни один из х1, х2, х3, х4 не может быть 0, (остальные тогда должны равняться 2, и 0+2*2*2=2 неверное, противоречие)

домножая первое на х1, второе на х2, третье на х3, четвертое на х4, получим
x^2_1+x_1x_2x_3x_4=2x_1
x^2_2+x_1x_2x_3x_4=2x_2
x^2_3+x_1x_2x_3x_4=2x_3
x^2_4+x_1x_2x_3x_4=2x_4

вычитая (и используя разность квадратов) получим
(x_3-x_4)(x_3+x_4)=2(x_3-x_4)
откуда x_3=x_4
или
x_3+x_4=2

аналогично получаем другие соотношения таких же двух возможных типов соотношений между корнями

итого в общем надо рассмотреть следующие возможные комбинации (остальные дадут повтор в силу симметрии записи уравнений по переменным),
x_1=x_2;x_1=x_3;x1=x_4
x_1=x_2;x_1=x_3;x_1+x_4=2
x_1=x_2;x_1+x_3=2;x_1+x_4=2
x_1+x_2=2;x_1+x_2=2;x_1+x_4=2
+
первое исходное уравнение
можем убедиться что (1,1,1,1) - единственное решение
4,4(67 оценок)
Ответ:
cuvluroyeoc
cuvluroyeoc
03.08.2020
Пусть в комнате 1 рыцарь и, соответственно, 99 лжецов.
Пусть лжецы выстроены в порядке возрастания роста:
z₁, z₂, z₃, ..., z₉₉.
Рассмотрим, для каких лжецов какая фраза будет истинной или ложной.
<<Не менее 10 лжецов ниже меня>>:
Для первых десяти лжецов z₁-z₁₀ эта фраза действительно ложь, так как слева от них стоит меньше 10 человек. Для остальных лжецов слева стоит хотя бы 10 лжецов, и соврать таким образом они не могут.
<<Не менее 10 лжецов выше меня>>:
Напротив, эта фраза ложна для последних десяти лжецов z₉₀-z₉₉, так как справа от них стоит меньше 10 человек. Для остальных лжецов справа стоит хотя бы 10 лжецов, и, сказав эту фразу, они не соврут.
Таким образом, соврать смогли лишь 20 лжецов: первые десять человек и последние десять человек (с наименьшим и наибольшим ростом). Это наибольшее число лжецов, которое может быть в этой ситуации. Именно оно обеспечивает наименьшее число рыцарей, которых будет 100-20=80.
ответ: 80
4,6(99 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ