М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lailasarsenbaev
lailasarsenbaev
07.02.2021 17:26 •  Алгебра

Решить данное уравнение методом замены переменной и укажите положительные корни. только подробно . 30 .

👇
Открыть все ответы
Ответ:

\sin(2x ) < \frac{1}{2}

2x < arcsin( \frac{1}{2} ) \\ 2x < \frac{\pi}{6}

разделим обе стороны на 2 чтоб упростить

x < \frac{\pi}{12}

Функция синуса принимает положительные значения в первом и втором квадрантах. Для определения второго решения вычитаем решение из

π

, чтобы найти решение во втором квадранте.

2x = \pi - \frac{\pi}{6}

x = \frac{5\pi}{12}

Период функции

sin(2х)

равен

π

, то есть значения будут повторяться через каждые

π

радиан в обоих направлениях

x = \frac{\pi}{12} + \pi(n). \frac{5\pi}{12} + \pi(n)

для всех целых n

Выбираем тестовое значение из каждого интервала и подставляем его в начальное неравенство, чтобы определить, какие интервалы удовлетворяют неравенству.

1.

\frac{\pi}{12} < x < \frac{5\pi}{12}

1 это ложно

2.

\frac{5\pi}{12} < x < \frac{13\pi}{12}

2 это истинно

3.

\frac{5\pi}{12} < x < \frac{17\pi}{12}

3 это ложно.

Итак

решение включает все истинные интервалы:

\frac{5\pi}{12} + \pi(n) < x < \frac{13\pi}{12}

для всех целых n

4,5(59 оценок)
Ответ:
555767
555767
07.02.2021

\sin(2x ) < \frac{1}{2}

2x < arcsin( \frac{1}{2} ) \\ 2x < \frac{\pi}{6}

разделим обе стороны на 2 чтоб упростить

x < \frac{\pi}{12}

Функция синуса принимает положительные значения в первом и втором квадрантах. Для определения второго решения вычитаем решение из

π

, чтобы найти решение во втором квадранте.

2x = \pi - \frac{\pi}{6}

x = \frac{5\pi}{12}

Период функции

sin(2х)

равен

π

, то есть значения будут повторяться через каждые

π

радиан в обоих направлениях

x = \frac{\pi}{12} + \pi(n). \frac{5\pi}{12} + \pi(n)

для всех целых n

Выбираем тестовое значение из каждого интервала и подставляем его в начальное неравенство, чтобы определить, какие интервалы удовлетворяют неравенству.

1.

\frac{\pi}{12} < x < \frac{5\pi}{12}

1 это ложно

2.

\frac{5\pi}{12} < x < \frac{13\pi}{12}

2 это истинно

3.

\frac{5\pi}{12} < x < \frac{17\pi}{12}

3 это ложно.

Итак

решение включает все истинные интервалы:

\frac{5\pi}{12} + \pi(n) < x < \frac{13\pi}{12}

для всех целых n

4,4(7 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ