Объяснение:
1. Дробь равняется нулю, когда в числителе ноль, а знаменатель отличен от нуля:
(x^2 - 9)/(x^3 + 2x^2 + 9) = 0;
{x^2 - 9 = 0;
{x^3 + 2x^2 + 9 ≠ 0.
2. Решим первое уравнение, разложив разность квадратов на множители по соответствующей формуле сокращенного умножения:
a^2 - b^2 = (a + b)(a - b);
x^2 - 9 = 0;
x^2 - 3^2 = 0;
(x + 3)(x - 3) = 0.
3. Приравняем каждый множитель к нулю:
[x + 3 = 0;
[x - 3 = 0;
[x = -3;
[x = 3.
4. Вычисляем значение знаменателя для каждого числа:
a) x = -3;
x^3 + 2x^2 + 9 = (-3)^3 + 2 * (-3)^2 + 9 = -27 + 18 + 9 = 0.
x = -3 не является корнем уравнения.
b) x = 3;
x^3 + 2x^2 + 9 = 3^3 + 2 * 3^2 + 9 = 27 + 18 + 9 = 54 ≠ 0.
x = 3 является корнем уравнения.
ответ: 3.
= 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))*(-2)(1+2x)-2(1-2x)/(1+2х)²=
= 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))* (-2-4х-2 +4х)/(1+2х)²=
=- 1/√((1-2x)/(1+2x)) * (1/2√(1-2x)/(1+2x))*4/(1+2х)²
2)у = √х*Cosx
y'=1/2√x*Cosx - √x*Sinx
3) f(x) = e^Sin4x
f'(x) = e^Sin4x * Cos4x*4
f'(0)= e^0*Cos0*4 = 1*1*4 = 4
4) f(x) (3x-4)*ln(3x-4)
f'(x) =3*ln(3x-4) + (3x-4)*3/(3x-4)= 3ln(3x-4) +3
5)f(x)=5^lnx
f'(x) = 5^lnx*1/x*ln5
6) f(x) = Ctg(2x + π/2) + (x-π²)/х = -tg2x + (x-π²)/х
f'(x) = -2/Cos²2x + (x - x + π²)/х² = -2/Cos² 2x + π²/x²
f'(π/12) = -2/Сos² π/6 + π²/π/12 = -3/2 + 12π