1.
– 6x – 23 = – 9x – 5
– 6x + 9x = – 5 + 23
3x = 18
x = 6
2.
8x – 6 = 5x + 3
8x – 5x = 3 + 6
3x = 9
x = 3
3.
6x + 7 = 20x – 5 – 16
6x – 20x = – 16 – 5 – 7
-14x = -28
x = 2
4.
15x – 12x – 20 = 14x + 35
15x – 12x – 14x = 35 + 20
-11x = 55
x = -5
5.
15x – 40 – 6 + 15x = 4x – 20
15x + 15x – 4x = – 20 + 6 + 40
26x = 26
x = 1
6.
2(x-23)+3(15-x)=-x+1
2x – 46 + 45 – 3x = – x + 1
2x – 3x + x = 1 – 45 + 46
0x = 2
Какой бы x мы ни взяли, это уравнение не превратится в верное равенство. Значит, это уравнение решений не имеет!
а) 3 прямые имеют наибольшее число точек пересечения 3 ,
б) 4 прямые - 6 точек пересечения ,
в) 5 прямых - 10 точек пересечения ,
г) n прямых - \frac{n(n-1)}{2}
2
n(n−1)
точек пересечения .
Решение. Заметим, что наибольшее число точек попарных пересечений получается, если каждая прямая пересекается с каждой и при этом никакие три прямые не пересекаются в одной точке. В этом случае количество точек попарных пересечений равно количеству пар прямых из данного множества n прямых. Как мы знаем, это число равно \frac{n(n-1)}{2}
2
n(n−1)
ответ : - 6