Заданное выражение записываем в виде функции: у = 5х + 1 - ((6х-3)/х) = 5х + 1 - 6 + (3/х) = 5х - 5 + (3/х). Так как переменная есть в знаменателе, то график такой функции - гиперболическая кривая. Найдём производную этой функции. y' = 5 - (3/x²) и приравняем её нулю. 5 - (3/x²) = 0. (5x² - 3)/x² = 0. Достаточно приравнять нулю числитель. 5x² - 3 = 0. x² = 3/5. x = +-√(3/5). Имеем 2 значения точек экстремума. Подставим их в функцию и находим 2 значения: у = -5 + 2√15 ≈ 2,7459667, у = -5 - 2√15 ≈ -12,745967. В этих точках касательная к графику параллельна оси Ох и функция достигает предельных значений. Получаем область допустимых значений функции: x ≤ -12,745967, x ≥ 2,7459667. Эти же значения можно записать так: x ≤ -5 - 2√15, x ≥ -5 + 2√15.
Давай смотреть на картинку: А→ х +15км/ч С х км/ч ← В (встреча) Пусть встреча произошла через t часов. Это значит, что АC = t(x +15) км, а ВС = t x км Что происходит после встречи? а) 1-й автомобиль проезжает СВ за 3 часа со скоростью х+15 км/ч "Слепим" уравнение: tx /3 = х +15 б) 2-й автомобиль проезжает СА за 5 1/3 часа = 16/3 часа "Слепим" ещё одно уравнение: t(x +15)/16/3 = х, ⇒ 3t(x +15)/16 = х Вот теперь нежно и ласково изучаем наши равенства: tx /3 = х +15 3t(x +15)/16 = х Давай разделим одно уравнение на другое ( чтобы t исчезло...) после всех мучений получаем: 16х/9(х +15) = (15 +х)/х Всё. Можно решать: 16х² = 9(х +15)² 16х² = 9х² +270х +225*9 7х² -270х -225*9 = 0 Решаем по чётному коэффициенту: х = (135+-180)/7 х₁ = 45; х₂ = -45/7(посторонний корень) Но нас спрашивают про время до встречи . Спрашивают про t ! Опять цепляемся за уравнение( которое попроще) tx /3 = х +15 t*45/3 = 45 +15 t * 15 = 60 t = 4(часа) ответ: встреча состоялась через 4 часа после начала движения.
(m^9n)=m^18n^2
блаблвблаблабла