Пусть второй кран опорожнит полную ванну pf Х мин.
А Р (1/мин) t (мин)
2 кран 1 - 1/X Х
1 кран 1 1/(X+2) X +2
1 + 2 -1 1/(X+2) - 1/X 60 вместе
Последняя строка таблицы говорит о том что ванна полностью опорожнилась за 60 минут, т.е. 1/(х+2)-1/х*60 = -1 (х-х-2)/((х(х+2))*60 = -1 -2/(х*(х+2))=-1/60 Х*(х+2) = 120 х^2+2х-120 = 0 В = 4-4*(-120) = 484(22) х1 = (-2+22)/2 = 10 х2<0
ОТВЕТ: второй кран опорожнит полную ванну за 10 минут.
Пусть х – число этажей, у – квартир, z –подъездов. х*y*z=231 Разложим число 231 на множители: 3*7*11=231 По условиям задачи количество квартир на каждом этаже больше 2, но меньше 7, т.е. 2> у <7 Отсюда видно, что число квартир равное 7 или 11 не подходит, т.к. не будет выполняться неравенство. Неравенство выполняется, если количество квартир на этаже равно 3: 2> 3 <7 (Значит 7 и 11 квартир быть не может). Количество квартир у =3
Пусть число этажей z=7 (11 подъездов), тогда количество квартир в подъезде составляет 3*7=21 первый подъезд имеет счет квартир: с 1 по 21 второй подъезд: с 22 по 42 Не подходит, т.к. не выполняется условие задачи: во втором подъезде есть квартира номер которой больше 42. Если число этажей 7, а число квартир 3, тогда максимальный номер квартиры во втором подъезде 42.
Возьмем количество этажей равным z=11, тогда количество квартир в подъезде 11*3=33 1 подъезд: с 1 по 33 номер 2 подъезд: с 34 по 66 номер (больше 42). Выполнены все условия задачи. Значит, в доме 11 этажей, 7 подъездов и 3 квартиры на каждом этаже. ответ: 11 этажей.
3m(4u+v)+5n(4u+v) = (4u+v)(3m+5n)