a₁=b₁=3
a₁+d=b₁q=a₁q d=a₁q-a₁
a₁q²/(a+2d)=9/5
5a₁q²=9*(a₁+2d)
5a₁q²=9a₁+18d
5a₁q²=9a₁+18*(a₁q-a₁)
5a₁q²=9a₁+18a₁q-18a₁
5a₁q²=18a₁q-9a₁ |÷a₁
5q²=18q-9
5q²-18q+9=0 D=144 √D=12
q₁=3 ⇒ d=3*3-3=9-3=6
q₂=0,6 ⇒ d=3*0,6-3=-1,2 ⇒
1) Геометрическая прогрессия (b₁=3, q=3): 3; 9; 27; 81; ...
Арифметическая прогрессия (a₁=3, d=6): 3; 9; 15; 21; ...
2) Геометрическая прогрессия (b₁=3, q=0,6): 3; 1,8; 1,08; ...
Арифметическая прогрессия (a₁=3, d=-1,2): 3; 1,8; 0,6; ...
Объяснение:
Чтобы записать данные нам выражения в виде многочлена, мы должны воспользоваться формулами сокращенного умножения.
Пример №1.
(3c - xy)^2
Данная формула называется квадратом разности.
(a - b)^2 = a^2 - 2ab + b^2 - вот вид данной формулы.
Теперь идем по порядку:
Квадрат первого числа минус удвоенное произведение первого числа на второе плюс квадрат второго числа.
Получаем:
9c^2 - 6cxy + xy^2 - окончательный результат.
Пример №2.
(3 + 5a)(3 - 5a)
Данная формула называется разностью квадратов.
Для того, чтобы решить этот пример, мы берем скобку со знаком минус, и возводим оба числа(стоящие в скобке) в квадрат.
То есть:
3^2 - 5a^2
Или же 9 - 25a^2
Задача решена.
Если есть вопросы - задавай.