х-числитель искомой дроби, тогда (х+2) - знаменатель ее. обратная к искомой дроби будет (х+2)/х. Можно составить уравнеие:
х/(х+2) + (х+2)/х = 130/63
ОДЗ: х не равен 0 и х не равно -2. и еще х должен быть положительным.
приводим к общему знаменателю слагаемые:
(х²+(х+2)²) / (х*(х+2)) = 130/63
(х²+х²+4х+4) / (х*(х+2)) = 130/63
(2х²+4х+4) / (х*(х+2)) = 130/63
63(2х²+4х+4) = 130*х*(х+2)
сократим на 2 обе части:
63х²+126х+126=65х²+130х
2х²+4х-126=0
х²+2х-63=0
Д=4+252=256-2 корня
х1=(-2+16)/2=14/2=7
х2=(-2-16)/2=-18/2=-9 - не удовлетворяет ОДЗ, значит не подходит
Находим знаменатель дроби: 7+2=9
Получили дробь: 7/9.
Проверка:
7/9 + 9/7 = (49+81)/63 = 130/63 - верно
ответ: искомая дробь: 7/9.
Классическая задача: обозначим скорость катера через x.
Тогда время, затраченное на движение в реке выразится через формулу 12/(x-3) + 5/(x+3)
Время же, затраченное на движение катера по озеру равняется 18/x.
То есть получаем уравнение:
12/(x-3) + 5/(x+3) = 18/x
решим его:
12/(x-3) + 5/(x+3) = 18/x ОДЗ: х>0; х не равен 3
12х(х+3) + 5х(х-3) = 18(х-3)(х+3)
12x^2 + 36x + 5x^2 - 15x = 18x^2 -162
x^2 -21x - 162 = 0
решим уравнение по теореме Виета:
x1 + x2 = 21
x1 * x2 = -162
x1 = 27 удовлетворяет ОДЗ x2 = -6 не удовлетворяет ОДЗ
ответ: собственная скорость катера = 27 км/ч
х²+3х-4 >0
(x+4)*(x-1)>0
корни левой части по Виета. а неравенство решим методом интервалов.
-41
+ - +
х∈(-∞;-4)∪(1;+∞)