В разряде тысяч пятёрка встречается 1000 раз - все числа от 5000 до 5999. В разряде сотен пятёрка встречается 100 раз по 10 (всего 1000) в числах от 500 до 599, от 1500 до 1599, от 2500 до 2599 и т. д. до 9500...9599. В разряде десятков пятёрка встречается 10 раз по 100 (всего 1000) в числах от 50 до 59, от 150 до 159 и т. д. до 9950...9959. В разряде единиц пятёрка встречается 1 раз по 1000 (всего 1000) в числах 5, 15, 25 и т. д. до 9995.
Всего пятёрка встречается 1000 + 1000 + 1000 + 1000 = 4000 раз.
ответ: 4000
10.
Відповідь:
40 км/год; 45 км/год.
Пояснення: Нехай швидкість першого поїзда х км/год, тоді швидкість другого поїзда х+5 км/год. Перший поїзд пробув у дорозі на 1 годину менше і проїхав 900:2=450 км, другий поїзд проїхав також 450 км. Маємо рівняння:
450/х - 450/(х+5) = 1
450х+2250-450х-х²-5х=0
х²+5х-2250=0
За теоремою Вієта х=-50 (не підходить) х= 40.
Швидкість першого поїзда 40 км, швидкість другого поїзда 40+5=45 км/год.
11.
Відповідь:
15 км/год; 18 км/год.
Пояснення: Нехай швидкість першого лижника х км/год, тоді швидкість другого лижника х+3 км/год. Перший лижник пробув у дорозі на 1/3 години менше. Маємо рівняння:
30/х - 30/(х+3) = 1/3
90х+270-90х-х²-3х=0
х²+3х-270=0
За теоремою Вієта х=-18 (не підходить) х= 15.
Швидкість першого лижника 15 км, швидкість другого лижника 15+3=18 км/год.
ответ: y=4*√(1-x²).
Объяснение:
Запишем уравнение в виде (1-x²)*dy=-x*y*dx. Разделив его на произведение y*(1-x²), получим уравнение с разделёнными переменными dy/y=-x*dx/(1-x²), или dy/y=1/2*d(1-x²)/(1-x²). Интегрируя обе части, находим ln/y/=1/2*ln(1-x²)+1/2*ln(C), где C - произвольное положительное число. Отсюда y=√[C*(1-x²)]. Используя условие y(0)=4, находим C=16. Отсюда искомое решение y1=4*√(1-x²).