Раскрываем знак модуля: 1) если х≥0, то | x| = x если y≥0, то | y| = y Уравнение принимает вид : (x+y-1)(x+y+1)=0 х+у-1=0 или х+у+1=0 у=-х+1 или у=-х-1 В первой четверти ( х≥0; у≥0) строим прямую у=-х+1, прямая у=-х-1 не проходит через первую четверть.
2)если х<0, то | x| =- x если y≥0, то | y| = y Уравнение принимает вид : (-x+y-1)(x+y+1)=0 -х+у-1=0 или х+у+1=0 у=х+1 или у=-х-1 Во второй четверти ( х<0; у≥0) строим две прямые у=х+1 или у=-х-1
3)если х<0, то | x| =- x если y<0, то | y| =- y Уравнение принимает вид : (-x+y-1)(x-y+1)=0 -х+у-1=0 или х-у+1=0 у=х+1 или у=х+1 В третьей четверти ( х<0; у<0) нет графика функции, так как прямая у=х+1 не расположена в 3 ей четверти
4) если х≥0, то | x| = x если y<0, то | y| =- y Уравнение принимает вид : (x+y-1)(x-y+1)=0 х+у-1=0 или х-у+1=0 у=-х+1 или у=х+1 В четвертой четверти ( х≥0; у<0) строим прямую у=-х+1, прямая у=x+1 не расположена в четвертой четверти. Тогда получится нужный график, см. рисунок
Чтобы выполнить это задание нужно вспомнить признаки делимости чисел. Число делится на 6 (кратно 6), если оно делится одновременно на 2 и на 3. 1) На 2 число делится в том случае, если оно четное, то есть оканчивается четной цифрой. Таким образом, чтобы выполнялось это условие, вместо звездочки нужно подставить цифру 2, 4, 6, 8 или 0. 2) Число кратно 3, если сумма его цифр кратна 3. То есть (2+5+7+*) должно делиться на 3. Подставим возможные варианты из первого пункта. 2+5+7+2=16 - не делится на 3 2+5+7+4=18 - делится на 3 2+5+7+6=20 - не делится на 3 2+5+7+8=22 - не делится на 3 2+5+7+0=14 - не делится на 3 Как видим, условию удовлетворяет только второй вариант: цифра 4. Число 2574 кратно 6. Вместо * надо подставить 4.
1) если х≥0, то | x| = x
если y≥0, то | y| = y
Уравнение принимает вид :
(x+y-1)(x+y+1)=0
х+у-1=0 или х+у+1=0
у=-х+1 или у=-х-1
В первой четверти ( х≥0; у≥0) строим прямую у=-х+1, прямая у=-х-1 не проходит через первую четверть.
2)если х<0, то | x| =- x
если y≥0, то | y| = y
Уравнение принимает вид :
(-x+y-1)(x+y+1)=0
-х+у-1=0 или х+у+1=0
у=х+1 или у=-х-1
Во второй четверти ( х<0; у≥0) строим две прямые у=х+1 или у=-х-1
3)если х<0, то | x| =- x
если y<0, то | y| =- y
Уравнение принимает вид :
(-x+y-1)(x-y+1)=0
-х+у-1=0 или х-у+1=0
у=х+1 или у=х+1
В третьей четверти ( х<0; у<0) нет графика функции, так как прямая у=х+1 не расположена в 3 ей четверти
4) если х≥0, то | x| = x
если y<0, то | y| =- y
Уравнение принимает вид :
(x+y-1)(x-y+1)=0
х+у-1=0 или х-у+1=0
у=-х+1 или у=х+1
В четвертой четверти ( х≥0; у<0) строим прямую у=-х+1, прямая у=x+1 не расположена в четвертой четверти.
Тогда получится нужный график, см. рисунок