Дана функция у = (x³ -6x² + 32)/(4 - x). Если х не равен 4, то числитель можно разделить на знаменатель и получим квадратичную функцию у = - x² + 2x + 8. График её - парабола ветвями вниз. Заданное условие выполняется, когда прямая y = а является касательной к графику в вершине параболы. Хо = -в/2а = -2/(2*(-1)) = 1. Отсюда имеем один из ответов: а = у(х=1) = -1+2+8 = 9. Так как заданная функция не существует в точке х = 4, то прямая у = 0 пересекает график только в точке х = -2. Второй ответ: а = 0.
ВЫПОЛНИМ ОПЕРАЦИЮ ПОТЕНЦИИРОВАНИЯ ТОГДА 1-2х ≤ 5х+25 так как основание лог меньше1 7х≥-24 х≥-24/7 Промежуток (-24/7 ; +бесконечность)
log3(x-6)+log3(x-8)>log3(27) log3 {(x-6)(x-8)}>log3(27) потенциируем обе части тогда (x-6)(x-8)>27 но тут не получается красивого решения, возможно в условии ошибка?
в третьем lgx (lgx+1) < 0 совокупность двух систем совокупность: первая система: lgx<0 ⇒решений нет (lgx+1)> 0 ⇒ вторая lgx>0 ⇒ промежуток (0;+бесконечность) (lgx+1)< 0 ⇒ lgx<-lg10 ⇒ х<0,1
корней нет
ответ : - 1 ; 4