М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
irina030270
irina030270
07.05.2020 00:30 •  Алгебра

Сделайте, .(желательно сейчас)
решите уравнения:

👇
Ответ:
kvm1
kvm1
07.05.2020

ответ:

д) х1=1,х2

объяснение:

думаю что такой решение

4,4(47 оценок)
Ответ:
Makc457214
Makc457214
07.05.2020

ответ:

х=1 х=8

объяснение:

всё подробно написала

4,7(32 оценок)
Открыть все ответы
Ответ:
arsjaja
arsjaja
07.05.2020

  4 /   2         2         /atan2(-im(m), -re(m))\       4 /   2         2         /atan2(-im(m), -re(m))\

      \/ 3 *\/   im (m) + re (m) *cos||   i*\/ 3 *\/   im (m) + re (m) *sin||

                                    \           2           /                                   \           2           /

n1 = - -

                                3                                                         3                            

                                                                                 

      4 /   2         2         /atan2(-im(m), -re(m))\       4 /   2         2         /atan2(-im(m), -re(m))\

    \/ 3 *\/   im (m) + re (m) *cos||   i*\/ 3 *\/   im (m) + re (m) *sin||

                                  \           2           /                                   \           2           /

n2 = +

                              3                                                         3                            

                /     /                                   \\               /     /                                   \\

            /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||           /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||

          /   /                 \     /                 \       |atan2| - + ||         /   /                 \     /                 \       |atan2| - + ||

          /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|         /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|

n3 = - 4 /     | - |   + | + |   *cos|| - i*4 /     | - |   + | + |   *sin||

      \/     \   6           6     /     \   6           6     /       \                       2                       /     \/     \   6           6     /     \   6           6     /       \                       2                       /

              /     /                                   \\               /     /                                   \\

          /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||           /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||

        /   /                 \     /                 \       |atan2| - + ||         /   /                 \     /                 \       |atan2| - + ||

        /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|         /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|

n4 = 4 /     | - |   + | + |   *cos|| + i*4 /     | - |   + | + |   *sin||

    \/     \   6           6     /     \   6           6     /       \                       2                       /     \/     \   6           6     /     \   6           6     /       \                       2                       /

                /     /                                   \\               /     /                                   \\

            /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||           /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||

          /   /                 \     /                 \       |atan2| + - ||         /   /                 \     /                 \       |atan2| + - ||

          /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|         /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|

n5 = - 4 /     | + |   + | - |   *cos|| - i*4 /     | + |   + | - |   *sin||

      \/     \   6           6     /     \   6           6     /       \                       2                       /     \/     \   6           6     /     \   6           6     /       \                       2                       /

              /     /                                   \\               /     /                                   \\

          /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||           /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||

        /   /                 \     /                 \       |atan2| + - ||         /   /                 \     /                 \       |atan2| + - ||

        /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|         /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|

n6 = 4 /     | + |   + | - |   *cos|| + i*4 /     | + |   + | - |   *sin||

    \/     \   6           6     /     \   6           6     /       \                       2                       /     \/     \   6           6     /     \   6           6     /       \                       2                       /

4,8(11 оценок)
Ответ:
raynis2
raynis2
07.05.2020
Task/28555810 решите тригонометрическое уравнение  2cosx + |cosx|=2sin2x*sin(π/6)      решение:     2cosx  +  |cosx|=sin2x        * * * sin( π/6) =1/2 * * *   2cosx  +  |cosx|=2sinxcosx                  * * *    sin2x = 2sinxcosx * * * а)  cosx < 0cosx  = 2sinxcosx  ;                                 * * * |cosx| = - cosx * * * 2cosx(sinx -1/2) = 0  ; sinx =1/2 ; x =(π-π/6)+2πk ,k  ∈  ℤ x =5π/6 +2πk ,k  ∈  ℤ . б)  cosx=0  x = π/2 +πn ,  n  ∈  ℤ в)  cosx > 0                * * * |cosx| = -  cosx * * * 3cosx  =  2sinxcosx ; 2cosx(sinx -3/2) =0    ⇒   x  ∈ ∅ .    * * * sinx ≠ 3/2 > 1 * * * ответ:     5π/6 +2πk ,  π/2 +πn            k,n ∈  ℤ .  
4,8(52 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ