1.
а) (3y - 2)(3y + 2) = 9y² - 4
б) (3y - 1)² = 9y² - 6y + 1
в) (4a + 3k)(4a - 3k) = 16a² - 9k²
2.
(b-8)² - (64 - 6b) = b² - 16b + 64 - 64 + 6b = b² - 10b = b(b - 10)
3.
a) 25 - y² = (5 - y)(5 + y)
б) a² - 6ab + 9b² = a² - 2×1×3ab + (3b)² = (a - 3b)²
4.
36 - (6 - x)² = x(2,5 - x)
36 - (36 - 12x + x²) = 2,5x - x²
12x + x² = 2,5x - x²
2x² + 9,5x = 0
x(2x + 9,5) = 0
x = 0 или 2x = -9,5
x = 0 или x = -4,75
ответ: 0; -4,75
5.
а) (c² - 3a)(3a - c²) = -(3a - c²)(3a - c²) = -(3a-c²)²
б) (3x + x³)² = 9x² + 6x⁴ + x⁶
в) (3 - k)²(k+3)² = (3 - k)²(3+k)² = [(3-k)(3+k)]² = (9 - k²)²
6.
а) (3x - 2)² - (3x - 4)(4 + 3x) = 0
(3x - 2)² + (4 + 3x)² = 0
9x² - 12x + 4 + 16 + 24x + 9x² = 0
12x + 20 = 0
12x = -20
3x = -5
x = -5/3
б) 25y² - 64 = 0
y² = 64/25
y = ± 8/5
7.
а) 36a⁴ - 25a²b² = a²(36a² - 25b²) = a²(6a - 5b)(6a + 5b)
б) (x - 7)² - 81 = (x - 7 - 9)(x - 7 + 9) = (x - 16)(x + 2)
Пусть х км/ч - скорость плота, тогда (х+12) км/ч - скорость моторной лодки.
5ч 20 мин=5целых 1/3 ч
Составим уравнение
20/(х+12)=(20/х)-5целых 1/3
20/(х+12)=(20/х)-(16/3)
20*3х=20*3(х+12)-16х*(х+12)
60х=60х+720-16х^2-192х
16х^2-192х-720=0
Разделим всё на 16
х^2+12х-45=0
Решаем квадратное уравнение
Дискриминант уравнения = b 2 - 4ac = 324
х1,2=(-b+-(корень из b 2 - 4ac )/2а
х1,2=(-12+-(корень из 324-4*1*(-45))/2*1
х1,2=(-12+-18)/2
х1=(-12+18)/2=3
х2=(-12-18)/2=-30/2=-15
Отрицательный корень убираем
ответ: скорость плота 3 км/ч
Проверка:
20/(3+12)=(20/3)-16/3
20/15=4/3
4/3=4/3
ответ:
! есть решение? )
изобразить схематически график функции и указать её область определения и множество значений; выяснить, является ли (функция ограниченной сверху (снизу):
1) у = х6;
4) у = х-2;
2) у = х5;
5) у = х-3;
3) у = х7;
6) у=х6.
объяснение: