Для определения координат точек пересечения нужно приравнять правые части обоих уравнений найти значения "х" при которых выполняется равенство, затем найденные х подставить в одно из уравнений (удобнее по расчетам в первое) и найти значения у соответствующие этим значениям. Полученные пары х и у и будут координатами точек пересечения. Предварительно можно сказать, что первый график - прямая, проходящая через начало координат, а второй гипербола находящаяся в первом и третьем квадрантах.
Точки экстремума - это точки, которые внешне выглядят на графике, как бугорки и впадинки. Чем отличаются эти точки? Тем, что в них производная функции обращается в нуль. 1) Вычислим её производную и приравняем к 0:
Понятно, что уравнение -4/x^3 = 0 корней не имеет. То есть, нет совсем точек, обращающих производную в 0. Поэтому нет и точек экстремума.
2)Аналогично рассмотрим второй случай.
Найдём производную от этой функции:
Приравниваем производную 0. Ясно, что y' = 0 корней не имеет, так как в числителе дроби уже стоит 1, а нулю знаменатель не может быть равен. Следовательно, делаем вывод мы, данная функция тоже не имеет точек экстремума. Мы ответили на все вопросы задачи.
Решение во вложении))))