М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ilyapopovsky10001
Ilyapopovsky10001
17.06.2021 00:02 •  Алгебра

Стестом тому поставлю много звёзд кто
1)найдите значение функции заданной формулой
а) y=3x-2 при значении аргумента равного - 4
б)y=x(2) при значении аргумента равного 0,2
2)найдите значение аргумента при котором
а) функция y= - 1,4 принимает значение равное 28
б)функция у=5х+4 принимает значение равное 1, 5

👇
Открыть все ответы
Ответ:
rlynx675
rlynx675
17.06.2021

Для вычисления понадобятся следующие определения и формулы.

arcsin b = α

Арксинусом числа b∈[-1; 1] называется угол α такой, что

sin α = b   и  \boldsymbol{-\dfrac{\pi }{2}\leq \alpha \leq \dfrac{\pi }{2}}.

arcsin (sin α) = α,  если \boldsymbol{\alpha \in \Big[-\dfrac{\pi }{2}; \dfrac{\pi }{2}}\Big]

sin (arcsin b) = b,   где  b∈[-1; 1]

cos (arcsin b) ≥ 0   и \boldsymbol{cos (arcsin~b)=\sqrt{1-b^2}} ,   b∈[-1; 1]

sin (2α) = 2 sin α · cos α

=====================================================

sin (2arcsin 0,75) = 2 · sin(arcsin 0,75) · cos (arcsin 0,75)

0,75∈[-1; 1]  ⇒   sin(arcsin 0,75) = 0,75 = 3/4

cos (arcsin 0,75) = cos (arcsin \dfrac{3}{4}) = \sqrt{1-\Big(\dfrac{3}{4}\Big)^2} =\sqrt{\dfrac{7}{16}} =\dfrac{\sqrt{7}}{4}

sin (2arcsin 0,75)=2sin(arcsin 0,75)\cdot cos (arcsin 0,75)=\\ \\ =2\cdot \dfrac{3}{4}\cdot \dfrac{\sqrt{7}}{4}=\boldsymbol{\dfrac{3\sqrt{7}}{8}}

===================================================

cos(arcsin(-0.5))=cos(arcsin\Big(-\dfrac{1}{2}\Big))=\\ \\=\sqrt{1-\Big(-\dfrac{1}{2}\Big)^2}=\sqrt{\dfrac{3}{4}} =\boldsymbol{\dfrac{\sqrt{3}}{2}}

===================================================

arcsin (sin2)

Так как   2 > π/2 ≈ 1,57,  то есть    2∉[-π/2; π/2] , то нельзя сразу воспользоваться формулой   arcsin (sin α) = α. Нужно преобразовать выражение с формул приведения.

arcsin (sin 2) = arcsin (sin (π - 2)) = π - 2

После преобразования  угол   (π - 2) ≈1,14 ∈ [-π/2; π/2]

4,5(11 оценок)
Ответ:
Valeriag2000
Valeriag2000
17.06.2021

Для вычисления понадобятся следующие определения и формулы.

arcsin b = α

Арксинусом числа b∈[-1; 1] называется угол α такой, что

sin α = b   и  \boldsymbol{-\dfrac{\pi }{2}\leq \alpha \leq \dfrac{\pi }{2}}.

arcsin (sin α) = α,  если \boldsymbol{\alpha \in \Big[-\dfrac{\pi }{2}; \dfrac{\pi }{2}}\Big]

sin (arcsin b) = b,   где  b∈[-1; 1]

cos (arcsin b) ≥ 0   и \boldsymbol{cos (arcsin~b)=\sqrt{1-b^2}} ,   b∈[-1; 1]

sin (2α) = 2 sin α · cos α

=====================================================

sin (2arcsin 0,75) = 2 · sin(arcsin 0,75) · cos (arcsin 0,75)

0,75∈[-1; 1]  ⇒   sin(arcsin 0,75) = 0,75 = 3/4

cos (arcsin 0,75) = cos (arcsin \dfrac{3}{4}) = \sqrt{1-\Big(\dfrac{3}{4}\Big)^2} =\sqrt{\dfrac{7}{16}} =\dfrac{\sqrt{7}}{4}

sin (2arcsin 0,75)=2sin(arcsin 0,75)\cdot cos (arcsin 0,75)=\\ \\ =2\cdot \dfrac{3}{4}\cdot \dfrac{\sqrt{7}}{4}=\boldsymbol{\dfrac{3\sqrt{7}}{8}}

===================================================

cos(arcsin(-0.5))=cos(arcsin\Big(-\dfrac{1}{2}\Big))=\\ \\=\sqrt{1-\Big(-\dfrac{1}{2}\Big)^2}=\sqrt{\dfrac{3}{4}} =\boldsymbol{\dfrac{\sqrt{3}}{2}}

===================================================

arcsin (sin2)

Так как   2 > π/2 ≈ 1,57,  то есть    2∉[-π/2; π/2] , то нельзя сразу воспользоваться формулой   arcsin (sin α) = α. Нужно преобразовать выражение с формул приведения.

arcsin (sin 2) = arcsin (sin (π - 2)) = π - 2

После преобразования  угол   (π - 2) ≈1,14 ∈ [-π/2; π/2]

4,5(64 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ