1) (X+2)*(X+3)
2) (X-2)*(X-3)
3) (X-5)*(X-3)
4) (X-3)*(X-4)
5) (X-4)*(X+3)
6)(X-4)*(X+2)
7) (X-3)*(X+2)
8) (X+5)*(X-3)
Ну во-первых, раскладывается квадратный трехчлен по формуле:
a(x- первый корень)*(х- второй корень)
Корни мы находим либо решая этот трехчлен как квадратное уравнение, либо по теореме Виета (удобнее, запись становится короче).
Я решала в основном по теореме(исключение - трехчлен под номером 6). В общем, теорема Виета:
сумма корней равна числу b,но с противоположным знаком (т.е. число b в формуле ax²+bx+c)
А произведение корней (x1*x2) равно числу c(знак не меняем!)
Через дискриминант решаем как обычное квадратное уравнение, т.е. выписываем ниже трехчлен уже как уравнение (проще говоря, приписываем =0 к концу трехчлена)
См. Объяснение.
Объяснение:
1) Чтобы раскрыть скобки, надо почленно умножить сомножитель который стоит перед скобкой, на каждое число или буквенное (буквенно-цифровое) выражение, которое стоит в скобках, не забывая при этом о знаках: минус на минус даёт плюс; плюс на минус даёт минус; плюс на плюс даёт плюс:
а · (-36+2с-у)= - 36а + 2ас - ау
Здесь мы сначала а умножили на -36 - получилось - 36а;
затем а умножили на 2с - получилось 2 ас,
затем а умножили на -у - получилось - ау.
2) Здесь всё сделали аналогично:
-1,5 · (2х - 4у) = -3х + 6у
3) А здесь после раскрытия скобок привели подобные:
3·(-4х+6) - (1-12х) = -12х +18 -1 + 12х = 17.
ПРИМЕЧАНИЕ.
В тетради надо записать только решения:
а · (-36+2с-у)= - 36а + 2ас - ау
-1,5 · (2х - 4у) = -3х + 6у
3·(-4х+6) - (1-12х) = -12х +18 -1 + 12х = 17.
Слова писать не надо, т.к. это - объяснение.