Объяснение:
2)-0,2х+0,4у=1
-0,2х=1-0,4у умножим на -1, чтобы избавиться от минуса перед х:
0,2х=0,4у-1/0,2 разделим на 0,2, чтобы избавиться от коэффициента перед х:
х= 2у-5 ответ№2
3)В системе, состоящей из уравнений:
5х-9у=38
3х+2у=8
для решения методом сложения нужно: ответ №2:
(5х-9у=38)*3 = 15х-27у=114
(3х+2у=8)*(-5)= -15х-10у= -40
4)Систему, состоящую из уравнений:
2х-3у= -1;
х-5у=3 удобнее решить методом подстановки.
5) Решением системы, состоящей из уравнений:
4х-3у=-11;
10х+5у=35
является: (1; 5)
Подставляем поочерёдно в уравнения заданные значения х и у, левая и правая части уравнений должны быть равны.
Только последняя пара дала результат -11= -11 и 35=35
Объяснение:
((a+7)\(a-7)-(a-7)\(a+7))\(14\(a^2-7a))
Приведем дроби в скобке к общему знаменателю a^2-49, домножив первую дробь на (a+7), а вторую на (a-7):
((a+7)^2-(a-7)^2)\(a^2-49)
По формуле разности квадратов:
((a+7-a+7)(a+7+a-7))\(a^2-49)
14*2a\a^2-49
28a\a^2-49
Представим деление одной дроби на другую умножением первой на перевернутую вторую:
(28a*(a^2-7a))\(14*(a^-49))
Вынесем в числителе "а" за скобку, а в знаменателе разложим скобку на множители:
(28a^2*(a-7))\(14(a-7)(a+7))
Сократим дробь:
2a^2\(x+7)