![F(x)=\int (ln\, sinx+1)\cdot cosx\, dx=\int ln(sinx)\cdot cosx\, dx+\int cosx\, dx=Q\\\\\\\star \; \; \int ln(sinx)\cdot cosx\, dx=[\; t=sinx\; ,\; dt=cosx\, dx\; ]=\int lnt\, dt=\\\\=[\; u=lnt\; ,\; du=\frac{dt}{t}\; ,\; dv=dt\; ,\; v=t\; ]=uv-\int v\, du=\\\\=t\cdot lnt-\int t\cdot \frac{dt}{t}=t\cdot lnt-t+C=sinx\cdot ln(sinx)-sinx+C=\\\\=sinx\cdot (ln(sinx)-1)+C\; \; \star \\\\\\Q=sinx\cdot ln(sinx)-sinx+sinx+C](/tpl/images/1055/2461/5b425.png)
1,(18)=1+0,(18)
0,(18)=x
18,(18)=100x
18+0,(18)=100x
18+x=100x
18=99x
x=18/99
x=2/11
0,(18)=2/11
1,(18)=1+0,(18) =1+2/11=13/11
2,(27)=7+0,(27)
0,(27)=x
27,(27)=100x
27+0,(27)=100x
27+x=100x
27=99x
x=27/99
x=3/11
0,(27)=3/11
1,(27)=1+0,(27) =1+3/11=14/11
0,(13)=x
13,(13)=100x
13+0,(13)=100x
13+x=100x
13=99x
x=13/99
0,(13)=13/99
2,(23)=7+0,(23)
0,(23)=x
23,(23)=100x
23+0,(23)=100x
23+x=100x
23=99x
x=23/99
x=23/99
0,(23)=23/99
2,(23)=2+0,(23) =2+23/99