Весь путь S время в пути пешехода (t), время в пути велосипедиста (t-2) путь до места встречи (S1), вторая часть пути (S2) S = S1 + S2 скорости велосипедиста и пешехода (vv) и (vp) S1 = vv * (4/3) S2 = vp * (4/3) S = (4/3) * (vv + vp) S = t * vp S = (t-2) * vv система (4/3) * (vv + vp) = t * vp t * vp = (t-2) * vv
4*vv = 3 * t * vp - 4*vp 4 * t * vp / (t-2) = (3*t - 4) * vp 4*t = (3*t - 4) * (t-2) 4*t = 3*t*t - 10*t + 8 3*t*t - 14*t + 8 = 0 D = 14*14 - 4*3*8 = 4*(49-24) = 10*10 t(1;2) = (14 +-10) / 6 = (7 +- 5) / 3 t = 4 t = 2/3 часа -- 40 минут - это меньше, чем 1 час 20 минут))) не является решением ответ: 4 часа шел пешеход, 2 часа ехал велосипедист.
3) построить графики y=x^2 парабола проходящая через начало координат y=2x прямая проходящая через начало координат и через точки (1;2) (2;4) определить координаты х точек пересечения. б) Либо построить график функции y=x^2-2x и определить точки пересечения с осью х. Точки пересечения y=x(x-2) это х1=0 х2=2. Вершишина параболы находится в точке с координатами x= -b/2a y=(c - b^2)/4a для уравнения вида ax^2 + bx +c = 0 для x^2 - 2x = 0 a=1 b= -2 c=0 вершина параболы в точке с координатами x=1 y= -1
4) парабола через начало координат и прямая через начало координат, выбрать участки каждого графика для заданных интервалов (см. рис)
Объяснение:
1.
а) 3x²+13x-10=0; D=169+120=289
x₁=(-13-17)/6=-30/6=-5
x₂=(-13+17)/6=2/3
ответ: -5 и 2/3.
б) 2x²-3x=0; x(2x-3)=0
x₁=0
2x-3=0; 2x=3; x₂=3/2=1,5
ответ: 0 и 1,5.
в) 16x²=49; (4x)²=49; 4x=±7
x₁=-7/4=-1,75
x₂=7/4=1,75
ответ: -1,75 и 1,75.
г) x²-2x-35=0
x₁+x₂=2; 7-5=2
x₁x₂=-35; 7·(-5)=-35
ответ: -5 и 7.
2.
a - ширина прямоугольника, см; b - длина прямоугольника, см.
Система уравнений:
2(a+b)=30; a+b=15; b=15-a
ab=56
a(15-a)=56
15a-a²-56=0
a²-15a+56=0
a₁+a₂=15; 7+8=15
a₁a₂=56; 7·8=56
Так как ширина меньше длины, то:
a₁=7 см и b₁=15-7=8 см
ответ: ширина прямоугольника 7 см, длина прямоугольника 8 см.
3.
x²+11x+q=0
При x₁=-7:
(-7)²+11·(-7)+q=0
49-77+q=0
q=28
x²+11x+28=0
x₁+x₂=-11; -7-4=-11
x₁x₂=28; -7·(-4)=28
x₂=-4
ответ: q=28; x₂=-4.