Уравнение имеет два одинаковых корня тогда,когда дискриминант равен нулю.Понятно, что уравнение должно быть квадратным.Давай посмотрим, а что если a=-2, главный коэффициент будет равен нулю и уравнение квадратным уже не будет,но тогда получим следующее выражение: (-2+2)x^2+2(-2+2)x+2=0 0*x^2+0*x+2=0 Видно,что при а=-2 квадратное уравнение не имеет смысла. Значит, "а" не должно равняться -2. А если "а" не равно "-2", то перед нами квадратное уравнение относительно "x". Напомню, что дискриминант должен быть равным нулю. Решим это равенство: D= [2(a+2)]^2-4(a+2)*2=0 (2a+4)^2-8(a+2)=0 4a^2+16a+16-8a-16=0 4a^2+8a=0 (разделим все члены уравнения на "4") a^2+2a=0 a(a+2)=0 a=0 U a=-2( посторонний корень) ответ:a=0
V - собственная скорость баржи. v+5 - скорость баржи по течению. v-5 - скорость баржи против течения. t1 - время движения баржи по течению. t2 - время движения баржи против течения. Тогда получаем: t1=40/(v+5) t2=30/(v-5) t1+t2=5 Подставляем значения t1 и t2 в последнее уравнение:
40v-200+30v+150=5 (v+5)(v-5) 70v-50=5(v2-52) - разделим левую и правую части уравнения на 5 14v-10=v2-52 0=v2-25-14v+10 v2-14v-15=0 Решим это квадратное уравнение через дискриминант D=(-14)2-4*1*(-15)=196+60=256 v1=(-(-14)+16)/(2*1)=(14+16)/2=30/2=15 км/ч v2=(-(-14)-16)/(2*1)=(14-16)/2=-2/2=-1 км/ч Так как скорость отрицательной быть не может, то: ответ: 15
Сначала переписывать с фото, потом ниже:
8у²-14у-15 не равен нулю
Д= 196-4×8×(-15)=196+480=676 26
Корень из Д= 26
У1=(14-26)/2×8 = -12/16 не равен -3/4
У2=(14+26)/16=40/16 не равен 5/2 или 2,5
-12у²+19у+21-14у²+17у+45+21у²-22у-63=0
-5у²+14у+3=0
Д=14²-4×(-5)×3=196+60=256
Корень из Д = 16
У1=(-14-16)/2×(-5) = -30/-10 = 3
У2= (-14+16)/-10 = 2/-10 = -1/5 = -0,2