Радиус проведённый в точку касания перпендикулярен касательной.
В четырёхугольнике сумма углов равна 360°.
В четырёхугольнике EOFC:
∠ECF = 360°-∠EOF-∠CEO-∠CFO = 360°-102°-90°-90° = 78°.
В треугольнике сумма углов равна 180°.
В ΔABC:
∠BAC = 180°-∠ABC-∠BCA = 180°-90°-78° = 12°
В четырёхугольнике BEOD:
∠EOD = 360°-∠ODB-∠DBE-∠BEO = 360°-90°-90°-90° = 90°
В четырёхугольнике DOFA:
∠DOF = 360°-∠OFA-∠FAD-∠ADO = 360°-90°-12°-90° = 168°
ответ: ∠A=12°, ∠C=78°, ∠EOD=90° и ∠FOD=168°.
Объяснение:
Не знаю, может и не правильно.
15
Объяснение:
В этой задаче важно правильно расставить точки А, Б, В, Г на круге. Обратите внимание, они не обязательно должны идти по порядку! Общая логика такая. Самая большая дуга (в данном случае АБ=60) должна охватывать или точку Г или точку В (см. рисунок), иначе выстроить дуги не получится. В результате, точка А будет лежать напротив точки Б, а точки В и Г автоматически расположатся напротив друг друга (как показано на рисунке).
Далее, по условию задания точно можно обозначить длины дуг АГ=35 и АВ=45. Дуга АБ=60 может пройти как через точку Г, так и через точку В (это нужно выяснить). Аналогично, дуга ВГ может проходить или через точку Б, или через точку А.
Дуга АБ может проходить как через Г, так и через В (результаты должны получаться равными). Если АБ проходит через Г, то сегмент ГБ=60-35=25 и дуга ВБ=40-25=15. Если же дуга АБ проходит через В, то длина ВБ=60-45=15. Все верно.
a ∈ (-oo; -1) U {0} U (1; +oo)
Объяснение:
1) При x < 1 будет |x - 1| = 1 - x
1 - x = ax
1 = ax + x
x = 1/(a+1) < 1
При a = -1 корней нет. При всех других а проверяем неравенство
1/(a+1) - 1 < 0
(1-a-1)/(a+1) < 0
-a/(a+1) < 0
a/(a+1) > 0
a ∈ (-oo; -1) U (0; +oo)
2) При x = 1 будет
|1 - 1| = a*1
a = 0
Подходит, потому что корень только один: x = 1
3) При x > 1 будет |x - 1| = x - 1
x - 1 = ax
x - ax = 1
x = 1/(1-a)
При а = 1 корней нет.
При всех других а проверяем неравенство
1/(1-a) - 1 > 0
(1-1+a)/(1-a) > 0
a/(1-a) > 0
a/(a-1) < 0
a ∈ (0; 1)
Получаем a1 ∈ (-oo; -1) U (0; +oo); a2 ∈ (0; 1)
Промежуток а2 вырезается из промежутков а1.
ответ: a ∈ (-oo; -1) U {0} U (1; +oo)