- + - +
____₀______₀_____₀____
- 2 2 6
///////// ////////////
ответ : x ∈ (- ∞ ; - 2) ∪ (2 ; 6)
+ - + - +
____₀_____₀____₀____₀____
- √15 - 3 0 √15
//////////// ///////////
ответ : x ∈ (- √15 ; - 3) ∪ ( 0 ; √15)
+ - - +
____₀_____₀_____₀____
- 5 - 2 2
///////// //////////
ответ : x ∈ (- ∞ ; - 5) ∪ (2 ; + ∞)
- - +
______(1)_____[7]_____
/////////// ////////////
ответ : x ∈ (- ∞ ; 1) ∪ (1 ; 7)
Степень с рациональным показателем Степень с рациональным показателем. Решение примеровЛекция: Степень с рациональным показателем и её свойстваСтепень с рациональным показателемСтепень с рациональным показателем - это та, в показателе которой находится конечная обыкновенная или десятичная дробь. Любую степень с рациональным показателем можно представить в виде корня, чья степень будет равна знаменателю дроби, находящейся в показателе степени, а числитель будет степенью подкоренного выражения.Свойства степени с рациональным показателемВсе, перечисленные ниже степени используются для рациональных чисел p, q и для положительных a, b.1. Если Вам необходимо умножить две степени с рациональными показателями, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели сложить.ap * aq = ap+q.Например:2. Если необходимо разделить две степени c рациональными показателями, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели вычесть.ap / aq = ap-q .Например,3. Если необходимо возвести одну степень в другую, основанием результата останется то же число, а показатели степени перемножаются.(ap )q = ap*qНапример,4. Если в некоторую степень необходимо возвести произведение произвольных чисел, то можно воспользоваться неким распределительным законом, при котором получим произведение различных оснований в одной и той же степени.(a * b)p = ap * bp5. Аналогичное свойство можно применять для деления степеней, иначе говоря, для возведения обыкновенной двоби в степень.(a / b)p = ap / bq6. Если некоторая дробь имеет отрицательный рациональный показатель степени, то для избавления от знака минуса, её следует перевернуть.Например,Очень важно помнить, что знак степени не влияет на знак выражения при возведении в степень
ответ: 2) 12 - 5ln 5; 3)7 - 5ln2.
Объяснение:
2) График в первом вложении. Во втором вложении заштрихована площадь фигуры, которую нужно найти. Так как нам не дан конкретный отрезок, она ограничивается вертикальными прямыми, проведенными через точки пересечения графиков - х = 1 и х = 5.
График функции y = 6 - x выше графика функции y = 5/x, поэтому формулу площади фигуры составляем следующим образом:
3) График в третьем вложении. В четвертом вложении заштрихована площадь фигуры, которую нужно найти. Так как нам дан только 1 конец отрезка, которым ограничена фигура, вторым концом будет точка пересечения графиков функций - х = 1.
График функции y = 4x + 1 на отрезке [1; 2] выше графика функции y = 5/x, поэтому формулу площади составляем следующим образом: