Порассуждаем.
Площадь ромба - это половина произведения его диагоналей. Произведение диагоналей вдвое больше: 96*2 = 192.
Диагонали ромба разбивают его площадь на 4 равных прямоугольных треугольника. Возьмём один такой треугольник. Сторона ромба - гипотенуза такого треугольника (стороны ромба равны). Значит, произведение катетов (катеты - половины диагоналей, так как в ромбе точкой пересечения диагонали разбиваются пополам) этого треугольника в 4 раза меньше произведения диагоналей: 192:4 = 48.
По условию, одна диагональ (а значит, и один из катетов нашего треугольника) в 3 раза больше другой. Значит, половина меньшей диагонали равна √48:3 = 4 см, а половина большей - 4*3 = 12 см.
Итак, у нас есть прямоугольный треугольник с катетами 4 см и 12 см, нужно найти его гипотенузу (напомним себе, что искомая гипотенуза есть сторона ромба). Воспользуемся теоремой Пифагора: 4² + 12² = 160, гипотенуза равна квадратному корню из суммы квадратов катетов: √160 = 4√10.
Таким образом, сторона ромба равна 4√10. Ромб - параллелограмм с равными сторонами, следовательно, все стороны ромба равны друг другу и составляют длину в 4√10 см.
ответ: 4√10 см.
ответ:x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}
Объяснение:
Уравнения вида, которое вы нам предоставили — очень часто вызывает различные затруднение у учеников и студентов тоже. Но это, на самом деле, не так страшно и не так сложно, как может показаться на первый взгляд. Прежде, чем разобраться с Вашей уравнением cos x = 1/2, нужно подумать, в каком виде можно представить данное уравнение, чтоб понять как его решать.
Вот так будет выглядеть Ваше условие на математическом языке:
\[cos x = \frac{1}{2}\]
Да, я понимаю, что это Вам особо не так как вид особо не изменился. Но чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит таким образом:
\[cos x = a\]
\[x = \pm arccos \mathbf{a} + 2\pi n, n \in \mathbb{Z}\]
Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:
\[cos x = \frac{1}{2}\\]
\[x = \pm arccos \frac{1}{2} + 2\pi n, n \in \mathbb{Z}\]
Значение arccos \frac{1}{2} мы найдём при таблицы. И исходя из этого получаем, что arccos \frac{1}{2} = \frac{\pi}{3}
Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:
\[cos x = \frac{1}{2}\]
\[x = \pm \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}\]
А уже, учитывая всё выше написанное, приведём решение нашего уравнения к нормальному виду и получим такое:
\[x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}\]
ответ: x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}
Объяснение:
3) вроде так, если правильно , то очень рада что вам☺️
4) не уверенна что правильно