М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MAKAROSHKA1337
MAKAROSHKA1337
18.01.2023 14:34 •  Алгебра

Кстандартному виду,
1) (a-b) (a+b) =
2) 2ab+(a-b)(a-b)=
3) 2ab-(a+b)(a+b)=
4) (a-b) (aa+ab+bb) =
5) aa+bb+(a-b) (b-a) =
6) (aa-ab+bb) (a+b) =​

👇
Ответ:
али5553
али5553
18.01.2023

1)а^2-в^2 остальное пахожее

4,8(34 оценок)
Ответ:
DarkDanilka
DarkDanilka
18.01.2023

a²-b²

2ab+a²-2ab-b²

2ab-²a²-2ab-b²=-a²-b²

a³+a²b+ab²-a²b -ab²-b³=a³-b³

a²+b²+ab-a²-b²+ab=2ab

a³+a²b-a²b-ab²+ab²+b³=a³+b³

4,6(65 оценок)
Открыть все ответы
Ответ:
ggdfjfxxglvx
ggdfjfxxglvx
18.01.2023
1)ответ: p = 5, q = 3.
Пусть p – q = n, тогда p + q = n³.
2)
ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.
4,4(13 оценок)
Ответ:
tusovki
tusovki
18.01.2023

1) Пусть оба числа непарные. Тогда p^2, p^3, q^2, q^3 тоже непарные. Так как сумма непарных равна парному числу, то p^2+q^3 и p^3+q^2 парные. Но p,q непарные (значит p>2, q>2) и тогда p^2+q^3>4+8=12>2 и оно не может быть простым. Второе число аналогично.

2) Тогда без потери общности, пусть p парное. Так как оно простое, то p=2.

2.1) Пусть q не делится на 3. Тогда q^2 дает остаток 1 при делении на 3. (Действительно, пусть q=3a+b, где b - остаток при делении q на 3. b может равняться 1 или 2 (из предположения), и поэтому q^2=(3a+b)^2=9a^2+6ab+b^2 дает такой же остаток, как и b^2 при делении на 3. Но b^2=1 или b^2=4, в обоих случаях дает остаток 1).

Рассмотрим число p^3+q^2=8+q^2, оно дает такой же остаток как и 8+1=9 при делении на 3. То есть делится на 3. Также 8+q^2>8>3. А значит не является простым.

2.2) Значит q делится на 3. Так как оно простое, то q=3. Проверяем: p^2+q^3=4+27=31 простое и p^3+q^2=8+9=17 простое.

Аналогично рассматривается случай, когда q=2. (Так как числа p^2+q^3 и q^2+p^3 симметричны относительно p и q, то ответ тоже будет симметричен, а значит q=2 и p=3).

ответ: p=2, q=3 или же p=3, q=2.

4,4(61 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ