№1
а) 12у+3у^2 = 3у(4+у) = 3 = 3 = 3 = 30 = 2
(4у+у^2)(у-0.4) у(4+у)(у-0,4) у-0,4 1,9-0,4 1,5 15
б) n^2-64 =(n-8)(n+8) = n-8 = 12-8 = 4 = 1
n^2+64+16n (n+8)^2 n+8 12+8 20 5
№2( Найдите естественную область определения рациональной дроби):
а) 3х
9х+15 9x+15 не равно 0
9х не равно -15
х не равен -15/9 = -5/3
б) 11
2m(m-5) m не равно 0, m не равно 5
№3 6abd = 6abd = 6a
bdc-abd bd(c-a) c-a
1) Решить систему линейных уравнений (СЛУ) – это значит найти упорядоченный набор значений всех входящих в неё переменных, который обращает КАЖДОЕ уравнение системы в верное равенство (тождество). Кроме того, система может не иметь решений , то есть быть несовместной.
2) Решение СЛУ с двумя неизвестными представляет собой пару значений двух переменных (х,у) , который обращает КАЖДОЕ уравнение системы в верное равенство. Кроме того, система может быть несовместной (не иметь решений).
3) Система может иметь более одного решения. И если система имеет более одного решения, то таких решений бесчисленное множество .
4) Система может не иметь решения, то есть она будет несовместной.
5) Графический метод решения СЛУ с двумя переменными состоит в том, чтобы начертить графики двух заданных уравнений (это будут прямые). Затем уже по графикам можно делать выводы о количестве решений системы и нахождении их, если они существуют.
6) Если СЛУ с 2 переменными имеет единственное решение, то графики прямых пересекаются в одной точке .
7) Если СЛУ с 2 переменными не имеет решений, то графики прямых параллельны.
8) Если СЛУ с 2 переменными имеет бесчисленное множество решений, то графики прямых совпадают.
15ау²-5а²у+6аb-18by = 5ay(3y-a) + 6b(a-3y) = 5ay(3y-a) + 6b(-(3y-a) = 5ay(3y-a) - 6b(3y-a) = (3y-a)(5ay-6b)