k = lim(+∞)Y(x)/x = (x²+3*x-4)/(x²+x) = 4. Уравнение асимптоты: Y = x.
6. Проверка на чётность.Y(-x) ≠ Y(x). Y(-x) ≠ - Y(x)
Функция ни четная ни нечетная.
7. Поведение в точке разрыва.
lim(->-1-) Y(x) = +∞. lim(->-1+) Y(x) = -∞. Точка перегиба.
8, Первая производная.
9. Корней производной - нет. Локальных экстремумов нет.
10. Участки монотонности функции.
Возрастает на всем интервале определения - Х∈(-∞;+∞).
11. Вторая производная.
Корней нет. Точек перегиба (на графике) - нет - разрыв.
12. Выпуклая - "горка" - Х∈(-1;-∞). Вогнутая - "ложка" - Х∈(-∞;-1)
13. График в приложении
у меня получилось х = 2, у = 0
система
х + у = 2
5х - 7у = 10
у = 2 - х
5х - 7(2-х) = 10
5х - 7(2-х) = 10
5х - 14 + 7х = 10
12х = 10 + 14
12х = 24
х = 2
если х = 2, то у = 2-2 = 0