(а+1)во 2 степени-(2а+3)во 2 степени=0 Нужно раскрыть скобки по формулам сокращенного умножения Сначала раскроем (а+1)во второй степени,получится а в квадрате +2а+1 Дальше рассмотрим оставшиеся,то есть -(2а+3)во второй степени -(4а в квадрате +12а+9 ) Раскроем скобки и получится -4а в квадрате -12а-9 В итоге получилось а в квадрате +2а+1-4а в квадрате -12а-9 Находим подобные и получается -3 а в квадрате -10 а -8=0 Теперь решаем дискриминантом Д(дискриминант)=корню из четырех ,то есть двум А1= -2 целые одна третья А2= -1
Второе уравнение решается аналогично 25 с в квадрате +80с +64 -с в квадрате +20с-100=0 Что-бы было удобней вычитать Д сократим все на два,и получится 6с в квадрате+25с-9=0 Д=корень из 841 =29 С1=1/3 С2=11/3=3 целых 2/3
Ветви параболы y = x^2 - x - 6 направлены вверх, следовательно функция y = 2x^3 - 3x^2 - 36x + a - 3 при x < -2 или x > 3 возрастает при -2 < x < 3 убывает
Найдём значения функции y = 2x^3 - 3x^2 - 36x при x = -2 и x = 3 Если x = -2, то y = -16 - 12 + 72 = 44 Если x = 3, то y = 54 - 27 - 108 = -81
=> график функции y = 2x^3 - 3x^2 - 36x - 44 будет касаться оси абсцисс в точке x = -2; пересечёт ось абсцисс в точке x > 3 Значит уравнение 2x^3 - 3x^2 - 36x - 44 = 0 будет иметь 2 действительных корня. => график функции y = 2x^3 - 3x^2 - 36x + 81 будет касаться оси абсцисс в точке x = 3; пересечёт ось абсцисс в точке x < -2 Значит уравнение 2x^3 - 3x^2 - 36x + 81 = 0 будет иметь 2 действительных корня.
В первом случае a - 3 = -44 => a1 = -41 Во втором случае a - 3 = 81 => a2 = 84
В итоге получается, что в уравнении 2x^3 - 3x^2 - 36x + a - 3 = 0 при a = -41 или a = 84 будут 2 действительных корня
Объяснение:
Выносим множитель за скобки, далее получается одинаковая скобка (х+у), х и у2 объединяем вместе, получается 2 скобки
.
.
.
.
.