Дана функция: y = x^2-6x+7 a) определите направление ветвей параболы b) вычислите координаты вершины параболы с) запишите ось симметрии параболы d) найдите нули функции е)найдите дополнительные функции f) постройте график функции
Допустим, что длина пути на подъём составляет х км, а длина пути на спуске равна у км, тогда по условию задачи мы можем составить систему из двух уравнений:
х/25 + у/50 = 3,5,
х/50 + у/25 = 4.
Из второго уравнения получаем:
(х + 2 * у)/50 = 4,
х + 2 * у = 200,
х = 200 - 2 * у.
Подставим это значение х в первое уравнение:
(200 - 2 * у)/25 + у/50 = 7/2,
(400 - 4 * у + у)/50 = 7/2,
2 * (400 - 3 * у) = 7 * 50,
800 - 6 * у = 350,
6 * у = 450,
у = 75 (км) - длина пути на спуске.
х = 200 - 75 * 2 = 50 (км) - длина пути на подъём.
125 км.
Объяснение:
Допустим, что длина пути на подъём составляет х км, а длина пути на спуске равна у км, тогда по условию задачи мы можем составить систему из двух уравнений:
х/25 + у/50 = 3,5,
х/50 + у/25 = 4.
Из второго уравнения получаем:
(х + 2 * у)/50 = 4,
х + 2 * у = 200,
х = 200 - 2 * у.
Подставим это значение х в первое уравнение:
(200 - 2 * у)/25 + у/50 = 7/2,
(400 - 4 * у + у)/50 = 7/2,
2 * (400 - 3 * у) = 7 * 50,
800 - 6 * у = 350,
6 * у = 450,
у = 75 (км) - длина пути на спуске.
х = 200 - 75 * 2 = 50 (км) - длина пути на подъём.
Таким образом, весь путь от А до В составит:
75 + 50 = 125 км.