1. чертим систему координат; отмечаем начало координат - точку О (0; 0), отмечаем стрелками положительное направление: вправо и вверх; подписываем оси : вправо - х, вверх - у; отмечаем единичные отрезки по каждой оси в 1 клетку.
2) для построения прямой достаточно двух точек, занесем их координату в таблицу:
х= 0 2
у= -2 2
3) отметим точки (0; -2) и (2; 2) на координатной плоскости; проведем через данные точки прямую линию; подпишем график функции у= 2х-2
Сразу поменяю а на х. Мне так просто привычней. Чтобы значение выражения было целым число, то нужно просто избавится от знаменателя, т.е в числителе вынести за скобки (х+2) и сократить со знаменателем. Сразу заметим, что х не равен -2 Для этого можно было бы попробывать решить уравнение Но с другой стороны можно сразу проверить является ли х=-2 корнем этого уравнения 4-6-2=-4, Значит х=-2 не является корнем этого уравнения. Следовательно нам не удастся преобразовать числитель к виду (х+а)(х+в).
Нам остается последний вариант приравнять х=0, тогда мы получаем
ответ х=0 единственный целое значение, при котором выражение тоже целое число!
F'(x) = f(x)
((x-1)²)' = 2(x-1)
Первообразная F(x) = (x-1)²+c - общий вид
у=2(х-1) = 2х-2 - график прямая
1. чертим систему координат; отмечаем начало координат - точку О (0; 0), отмечаем стрелками положительное направление: вправо и вверх; подписываем оси : вправо - х, вверх - у; отмечаем единичные отрезки по каждой оси в 1 клетку.
2) для построения прямой достаточно двух точек, занесем их координату в таблицу:
х= 0 2
у= -2 2
3) отметим точки (0; -2) и (2; 2) на координатной плоскости; проведем через данные точки прямую линию; подпишем график функции у= 2х-2
Всё!