C-точка встречи AC=x CB=280-x T1=1ч30мин=3/2 ч Т2=2ч40мин=2 +40/60=2 2/3=8/3 S=VT V=S/T V1=(280-x)/3/2=2(280-x)/3 V2=x/8/3=3x/8 и заметим что до встречи они проехали одинаковое время AC/V1=CB/V2 x : 2(280-x)/3 = (280-x) : 3x/8 3x/2(280-x)=8(280-x)/3x 9x²=16(280-x)² так как все везде положительное то не будем делвть сложных возведений в степень ( хотите сделайте) а вместо этого возьмем корень слева справа 3x=4(280-x) 3x=4*280-4x 7x=4*4*70 x=160 встретились на расстояние от А V2=3*160.8=60 км ч V1=2*120/3=80 км ч T=280/(60+80)=2 часа
Немного нетривиальная задача Немного повозится надо ПЕрвое что они ехали одно и тоже время до встречи и аккуратно расписать все скорости и времена
Найдем производную у`=(6x-3tgx-1,5π +2)`= 6-3·(1/cos²x). Решим уравнение y`=0 3/cos²x = 6; cos²x=1/2 ⇒ cosx = - √2/2 или cosx = √2/2 х= ± arccos(- √2/2 )+2πk, k ∈ Z или х= ±arccos(√2/2 )+2πn, n ∈ Z;
х= ±(π - arccos( √2/2 ))+2πk, k ∈ Z или х= ±(π/4)+2πn, n ∈ Z; х= ±(π- (π/4))+2πk, k ∈ Z. х= ±(3π/4)+2πk, k ∈ Z. Указанному отрезку принадлежат два значения π/4 и -π/4
Находим значения самой функции в этих точках и на концах отрезка и выбираем среди них наибольшее и наименьшее.
5000/100*11=550 (грн) - доход за первый год
5000+550=5550 (грн) - сумма на начало второго года
5550/100*11=610,5 (грн) - доход за второй год
550+610,5=1160,5 (грн) - доход за два года
ответ: 1160,5 грн