Они встретятся тогда, когда между ними будет ровно круг. Т.е. велосипедист обгонит пешехода на ДЛИНУ КРУГА. L - длина круга, тогда 1.6vt-vt=L - условие, при котором первый обгонит второго на L, т.е. на круг 0.6vt=L vt=1,66l - т.е. пешеход со скоростью v с временем t должен быть на длине 1,66L для первого ОБГОНА, т.е. на расстоянии 0.66l от начала круга для второго обгона: 1,6vt-vt=2L vt=3,33l, т.е. пешеход должен быть на расстоянии 0,33 длины круга
на третий раз формула таже, vt=5l, т.е. обгон будет ровно на старте круга
Функция у = х² + 4х - 12
График функции - квадратная парабола веточками вверх
Найдём характерные точки этой параболы.
1) Точка пересечения с осью Оу: х = 0; у = -12;
2) точки пересечения с осью Ох: у = 0
х² + 4х - 12 = 0
D = 4² - 4 · (-12) = 64
√D = 8
x₁ = (-4 - 8)/2 = -6
x₂ = (-4 + 8) = 2
Получили две точки (-6; 0) и (2; 0)
3) найдём координаты вершины С параболы С(m; n)
m = - b/2a = -4/2 = -2
n = y(-2) = (-2)² + 4 · (-2) - 12 = -16
C(-2; -16)
По найденным точкам строим параболу (смотри прикреплённый рисунок).
По графику находим
а) у > 0 при х ∈ (-∞; -6)∪(2; +∞); y < 0 при х ∈ (-6; 2)
б) у↑ при х ∈ (-2; +∞); у↓ при х ∈ (-∞; -2)
в) у наим = у(-2) = -16; наибольшего значения не существует.