График расположен выше оси ОХ. Точки пересечения с осью ОХ: . Графики функций - это параболы , ветви которых направлены вниз, а вершины в точках (0, а). При х=0 sin0=0 и точка (0,0) является точкой пересечения графика у=|sinx| и оси ОУ, на которой находятся вершины парабол. При а=0 графики y=|sinx| и y=x² имеют одну точку пересе- чения - (0,0), при а<0 точек пересе- чения вообще нет. А при а>0 будет всегда 2 точки пересе- чения этих графиков и соответственно, будет выполняться заданное неравенство. То есть одна точка пересечения при а=0. ответ: а=0.
Два последних по списку выражения.
Объяснение:
1. (-1) в (-4) степени: отрицательное основание (-1) в четной степени будет положительным, а 1 в любой степени равен 1, так что 1
(-1) в (-3) степени: отрицательное основание (-1) в нечетной степени будет отрицательным, а 1 в любой степени равен 1, так что -1.
1 - (-1) = 1+1 = 2.
2. (-1) в 6 степени: -1 в четной степени будет просто 1, поскольку степень четная.
(-1) в 8 степени: то же самое, 1.
1+1=2.
3. (-1) в (-6) степени: отрицательное основание в четной степени положительно, значит просто 1.
(-1) в 8: было, 1.
1+1=2.
4. (-1) в 7: отрицательное основание в нечетной степени отрицательно, то есть -1.
1 в 7 степени: тут думаю все понятно, просто единица и просто в 7 степени, 1.
-1+1=0
5. (-1) в 4 степени: было подобное, 1.
(-1) в 9 степени: подобное тоже было, -1.
1+(-1)= 1-1 = 0.