Не решая уравнение x² - 3|x|+ 1=0, найдите сумму квадратов всех его корней.
ответ: 14
Объяснение:
x≥0 ⇒ x²- 3x+1=0 D =3² - 4*1 = 5 > 0 имеет действительных корней
x₁² +x₂² = (x₁ +x₂)² -2x₁*x₂ = 3² -2*1 = 7
x< 0 ⇒ x²+3x+1=0 , пусть корни x₃ и x₄
x₃² +x₄² = (-x₁)² + (-x₂)² = x₁² +x₂² = 7
следовательно :
x₁² +x₂² +x₃² +x₄² =2(x₁² +x₂²) =2*7 =14
* * * Корни кв. уравнений ax² − bx+ c =0 и ax² + bx+ c =0
противоположных знаков , но по модулю равные * * *
не знаю-будет ли понятно мое решание, но всеже:
х- первоначальное однозначное число. тогда после увеличения на 8 получим число х+8.
расчитаем на сколько процентов увеличилось при этом число:
х - 100%
х+8 - у процентов
тогда у=(х+8)*100/х - это мы нашли сколько стало процентов после увеличения. теперь найдем на сколько увеличилос процентов:
у-100 = (х+8)*100/х -100
таким образом, получили уравнение:
(х+8) + (х+8)/100 * ((х+8)*100/х -100) = 36
х+8 + (х+8)/100 * ((100х+800-100х)/х) = 36
х+8 + (х+8)/100 * (800)/х = 36
х+8 + ((х+8)8))/х = 36
х+8 + (8х+64)/х = 36
ОДЗ: х не равен 0
домножим все на х:
х²+8х + 8х + 64 = 36х
х² - 20х +64 = 0
Д=400-256=144 - 2 корня
х1 = (20-12)/2 = 4
х2 = (20+12)/2 = 16 - не подходит, т.к. по условию сказано что первоначально ечисло было однозначное.
ответ: первончально ечисло раняется 4.
ПРОВЕРКА:
4 - первоначальное число, прибавили 8 стало равно 4+8=12. Найдем на сколько процентов произошло увеличение в результате:
4 - 100%
12 - х%
х=12*100/4=300%
300%-100%=200% - т.е. число увеличилось на 200%
теперь увеличим на столько же число 12:
12+12*200/100 = 12+12*2 = 12+24=36 - по условию так и должно получится. Следовательно задача решена правильно.
ответ: x1^2+x2^2+x3^2+x4^2 = 14
Объяснение
x^2-3*|x|+1=0
x^2=|x|^2
|x|^2 -3*|x|+ 1= 0
Замена: |x|=t>=0
t^2-3t+1=0
По теореме Виета :
t1*t2=1
t1+t2=3
t1^2+t2^2 = (t1+t2)^2 -2*t1*t2 = 3^2 -2*1 = 7
Если произведение чисел положительно , то они имеют одинаковый знак , но поскольку их сумма так же положительна , то оба этих числа положительны. И очевидно ,что корни не равны нулю.
А значит для каждого t возможно два значения x :
x1=t1
x2=-t1
x3=t2
x4=-t2
Сумма квадратов всех корней :
x1^2+x2^2+x3^2+x4^2 = 2* (t1^2+t2^2) = 2*7=14