М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
polinaponomare1
polinaponomare1
27.12.2022 20:24 •  Алгебра

Найдите наибольшее и наименьшее значения функции y=f(x) на этом промежутке; f(x) = x^2-5x+6, [0; 3]

👇
Ответ:
SanGrey
SanGrey
27.12.2022
F(x)=x^2-5x+6
Найдем производную заданной функции:
f'(x)= 2x-5
Приравняем ее к нулю и найдем стационарные точки:
2x-5=0
2x=5
x=2,5
Найденная точка принадлежит отрезку [0;3].
y(0)= 6
y(2,5)= 2,5^2-5*2,5+6=-0,25
y(3)=3^2-5*3+6=0
Таким образом, У наим.=-0,25 и достигается в точке x=2,5
У наиб.=6 и достигается в точке x=0.
4,7(7 оценок)
Открыть все ответы
Ответ:
PolinaChery04
PolinaChery04
27.12.2022

ОДЗ: х принадлежит (-бесконечность; -4) U (4; +бесконечность)

для нахождения экстремума нужно найти производную...

f ' (x) = ((2x-5)(x+4) - (x^2-5x)) / (x+4)^2 = (2x^2 + 3x - 20 - x^2 + 5x) / (x+4)^2 =

= (x^2 + 8x - 20) / (x+4)^2 = (x-2)(x+10) / (x+4)^2

решение неравенства (x-2)(x+10) / (x+4)^2 > 0 (корни: -10; -4; 2)

х принадлежит (-бесконечность; -10) U (2; +бесконечность) =>

функция возрастает при х принадлежит (-бесконечность; -10] U [2; +бесконечность)

функция убывает при х принадлежит [-10; -4) U (-4; 2]

при х = -10 ---функция достигает максимума fmax = (100+50)/(-6) = -25

при х = 2 ---функция достигает минимума fmin = (4-10)/6 = -1

система:

9x - x^2 > 0

5 - x > 0

lg(5-x) не равен 0

x(9 - x) > 0

x < 5

5 - x не равно 1

х принадлежит (-бесконечность; 0) U (9; +бесконечность)

х принадлежит (-бесконечность; 5)

х не равен 4

х принадлежит (-бесконечность; 0) --- x < 0

4,4(57 оценок)
Ответ:
kuzmichevaliza
kuzmichevaliza
27.12.2022

ОДЗ: х принадлежит (-бесконечность; -4) U (4; +бесконечность)

для нахождения экстремума нужно найти производную...

f ' (x) = ((2x-5)(x+4) - (x^2-5x)) / (x+4)^2 = (2x^2 + 3x - 20 - x^2 + 5x) / (x+4)^2 =

= (x^2 + 8x - 20) / (x+4)^2 = (x-2)(x+10) / (x+4)^2

решение неравенства (x-2)(x+10) / (x+4)^2 > 0 (корни: -10; -4; 2)

х принадлежит (-бесконечность; -10) U (2; +бесконечность) =>

функция возрастает при х принадлежит (-бесконечность; -10] U [2; +бесконечность)

функция убывает при х принадлежит [-10; -4) U (-4; 2]

при х = -10 ---функция достигает максимума fmax = (100+50)/(-6) = -25

при х = 2 ---функция достигает минимума fmin = (4-10)/6 = -1

система:

9x - x^2 > 0

5 - x > 0

lg(5-x) не равен 0

x(9 - x) > 0

x < 5

5 - x не равно 1

х принадлежит (-бесконечность; 0) U (9; +бесконечность)

х принадлежит (-бесконечность; 5)

х не равен 4

х принадлежит (-бесконечность; 0) --- x < 0

4,7(30 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ