Объяснение:
1.Функция -отношение между элементами, при котором изменение в одном элементе влечёт изменение в другом.Область определения функции-множество, на котором задаётся функция.
2. Начальная функция это y0. Неопределенный интеграл-это совокупность всех первообразных данной функции.
Свойства неопределенного интеграла
1)Производная неопределенного интеграла равна подынтегральной функции; дифференциал от неопределенного интеграла равен подынтегральному выражению, т.е.
2)Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной, т.е.
3)Постоянный множитель можно вынести из-под знака интеграла, т.е. если то
4)Неопределенный интеграл от алгебраической суммы двух функций равен алгебраической сумме интегралов от этих функций в отдельности, т.е.
Интегрирование- название, данное ряду приемов, используемых для вычисления различных ИНТЕГРАЛОВ.
3.
x^3+bx^2+сx+d=0
c целыми коэффициентами рациональными корнями могут быть только числа являющиеся делителями свободного члена d
Проверяем для первого уравнения свободный член -6 - его делители +-1 +-2 +-3 +-6
подставляем эти x в уравнение
1 2 3 - являются корнями
x^3-6x^2+11x-6=(x-1)(x-2)(x-3)=0
Первый ответ:
x=1 x=2 x=3
Для второго уравнения свободный член -12 - его делители +-1 +-2 +-3 +-4 +-6 +-12
подставляем эти x в уравнение
-4 -3 1 - являются корнями
x^3+6x^2+5x-12=(x+4)(x+3)(x-1)=0
Второй ответ
x= -4 x= -3 x=1