Корнем явл. любое число 0=0
ответ разместил: Гость
при m < n
объяснение:
чем больше степень корня, тем меньшее число мы получим при извлечении:
возьмём \sqrt[3]{3} и \sqrt[4]{4}.
1,44 > 1,41.
возьмём \sqrt[4]{4} и \sqrt[5]{5}
1,41 > 1,37
возьмём \sqrt[5]{5} и \sqrt[6]{6}
1,37 > 1,34
возьмём \sqrt[6]{6} и \sqrt[7]{7}
1,34 > 1,32.
это простенько
возьмём \sqrt[99]{99} и \sqrt[100]{100}\
1,04750 > 1,04712
возьмём совсем экстремальный пример \sqrt[999]{999} и \sqrt[1000]{1000}
1,006937 > 1,006931
Объяснение:
я старался
Пусть сторона куба при распиливании была разделена на х частей.
Тогда неокрашенных кубиков (внутренних) будет (х-2)^3, а число кубиков, у которой окрашена ровно одна грань (кубики на гранях большого, не прилежащие к ребрам) равно 6·(х-2)^2.
Получаем уравнение (x-2)^3 = 6·(x-2)^2 или x-2 = 6, x = 8
Куб распилили на 8^3 = 512 кубиков.
——————————————————————
Кубиков с 3 окрашенными гранями – 8
Кубиков с 2 окрашенными гранями – 6·12 = 72
Кубиков с 1 окрашенной гранью – 6·6·6 = 216
Неокрашенных кубиков – 6·6·6 = 216