знаменатель дроби не должен быть равен нуля.Разложим знаеменатель .
х(в квадрате) -9х+20=0 .По дискрименанту разложим и найдем корни.дискрименант равен единице.Следовательно 2 корня этого уравнения .Теперь найдем корни . X1=5 ,а X2- 4.Следвотельно область определения этой функции является промежуток (-бесконечности до 54включительно) U (4;5) u (5; + бесконечности)
5sin²x + 3sinx × cosx - 4 = 0
5sin²x + 3sinx × cosx - 4×1 = 0
5sin²x + 3sinx × cosx - 4(sin²x + cos²x) = 0
5sin²x + 3sinx × cosx - 4sin²x - 4cos²x = 0
sin²x + 3sinx × cosx - 4cos²x = 0 | : cos²x
tg²x + 3tgx - 4 = 0
Пусть tgx = a, тогда:
a² + 3a - 4 = 0
D = 3² - 4×1×(-4) = 9 + 16 = 25
D>0, 2 корня
x₁ = -3+√25/2×1 = -3+5/2 = 2/2 = 1
x₂ = -3-√25/2×1 = -3-5/2 = -8/2 = -4
tgx = 1 или tgx = - 4
x₁ = π/4 + πn, n∈Z x₂ = arctg(-4) + πn, n∈Z
x₂ = - arctg 4 + πn, n∈Z
ответ: x₁ = π/4 + πn, n∈Z
x₂ = - arctg 4 + πn, n∈Z
Объяснение:
Собственная скорость Vc= х км/ч.
Против течения :
t₁ = S/(Vc- Vт) = 18 / (x-3) (ч.)
По течению:
t₂= S/ (Vc+Vт) = 48/ (x+3) (ч.)
Всего:
t₁+t₂=3 (ч.)
18/(х-3) + 48/(х+3) = 3 |× (x-3)(x+3)
18(x+3) + 48(x-3) = 3(x-3)(x+3)
18x+54 + 48x - 144= 3(x²-9)
66x -90 = 3x² - 27 |÷3
22x - 30 = x²-9
x²-9 -22x+30=0
x²-22x+21=0
D= (-22)² -4*1*21 = 484-84=400 ; √D= 20
x₁= (22 -20) /2 =2/2=1 - не удовл. условию, т.к. скорость лодки не может быть меньше течения реки
x₂= (22+20)/2= 42/2=21 (км/ч) Vc
ответ: Vc= 21 км/ч.
Дробь НЕ существует, когда знаменатель = 0
D = 81-80 = 1
x = 5; x = 4
Область определения функции: