Знаю
Объяснение:
1. На фото
2. На фото
3. На фото
4. На фото
5. На фото
6. На фото
7. 0 {
(x+1)
2
+(y−1)
2
=(x+4)
2
+(y+2)
2
−18
(x−y)(x+y)−x(x+10)=y(5−y)+15
\left \{ {{x^2-y^2 -x^2- 10x = 5y - y^2 + 15} \atop {x^{2} +2x+1+y^2-2y+1=x^2+8x+16+y^2+4y+4-18}} \right.{
x
2
+2x+1+y
2
−2y+1=x
2
+8x+16+y
2
+4y+4−18
x
2
−y
2
−x
2
−10x=5y−y
2
+15
\left \{ {{-y^2- 10x - 5y + y^2 - 15=0} \atop {x^{2} +2x+y^2-2y+2=x^2+8x+y^2+4y+2}} \right.{
x
2
+2x+y
2
−2y+2=x
2
+8x+y
2
+4y+2
−y
2
−10x−5y+y
2
−15=0
\left \{ {{- 10x - 5y- 15=0} \atop {x^{2} +2x+y^2-2y+2-x^2-8x-y^2-4y-2=0}} \right.{
x
2
+2x+y
2
−2y+2−x
2
−8x−y
2
−4y−2=0
−10x−5y−15=0
\left \{ {{- 10x - 5y- 15=0}|:(-5) \atop {-6x-6y=0}} \right.{
−6x−6y=0
−10x−5y−15=0∣:(−5)
\left \{ {{2x +y+3=0} \atop {-6x-6y=0}|:(-6)} \right.{
−6x−6y=0∣:(−6)
2x+y+3=0
\left \{ {{2x +y+3=0} \atop {x+y=0}} \right.{
x+y=0
2x+y+3=0
x+y=0x+y=0 => x=-yx=−y
2*(-y) +y+3=02∗(−y)+y+3=0
-2y +y=-3−2y+y=−3
-y=-3−y=−3
y=-3:(-1)y=−3:(−1)
y=3y=3
x=-yx=−y => x=-3x=−3
x+y=-3+3=0x+y=−3+3=0 сума
Вiдповiдь: 0
Найти а) частное решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям ;
б) общее решение линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
a) y " + 8y ' + 7y = 0 ; y(0) = 2 ; y '(0) = 1 .
Составляем и решим характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
k² + 8k +7 =0 D₁ = (8/2)² - 7 = 4² -7 = 9 = 3² ; √D₁ =3
* * * очевидно по т Виета * * * k = - 1 корень
k₁,₂ = - (8/2) ± 3
k₁ = -4 - 3 = - 7 ;
k₂ = - 4 + 3 = -1 .
Получены два различных действительных корня
Общее решение : y = C₁e^(-7x) +C₂e^(-x) , где C₁ и C₂ произвольные константы (постоянные) .
* * * Придавая константам различные значения, можно получить бесконечно много частных решений * * *
Определим частное решение удовлетворяющее заданным начальным условиям : y(0) = 2 , y ' (0) = 1 .
y(0) = C₁e^(-7*0) +C₂e^(-0 ) = C₁ + C₂ = 2;
y ' = ( C₁e^(-7x) +C₂e^(-x) ) ' = -7*C₁e^(-7x) - C₂e^(-x)
y ' (0) = -7*C₁e^(-7*0) - C₂e^(-0) = - 7C₁ - C₂ = 1 .
- - - Составим и решим систему из двух найденных уравнений:
{ C₁ + C₂ = 2 ; {-6C₁ = 2+1 ; {C₁ = -0,5 ; { C₁ = - 0,5 ;
{ - 7C₁ - C₂ = 1 . { C₂ = - 7C₁ - 1. { C₂ =-7*(-0,5) -1 . { C₂ = 2,5 .
* * *методом сложения * * *
Подставим найденные значения C₁ и C₂ в общее решение
ответ : - 0,5 e^(-7x) +2,5 e^(-x) частное решение удовлетворяющее заданным начальным условиям.
- - - - - - -
б) y ' ' - 6y ' + 8y = 3e^ 4x
k² - 6k + 8 =0 ( характеристическое уравнение )
k₁ = 2 ;
k₂ = 4 .
y₀= C₁e^(2x) +C₂e^(4x) общее решение без правой части
Далее найдем частное решение данного уравнения по правой части у₁ =Axe^(4x) , у₁' = Ae^(4x) +4Axe^(4x) , у₁' ' = 4Ae^(4x) +4A(e^(4x) +4xe^(4x) )=8Ae^(4x) +16Axe^(4x)
8Ae^(4x) +16Axe^(4x) - 6Ae^(4x) -24Axe^(4x) +8Axe^(4x) =3e^4x
2Ae^(4x) =3e^(4x ) ⇒ A =1,5 ; y₁=Axe^(4x) = 1,5xe^(4x)
y = y₀ + y₁ = C₁e^(2x) +C₂e^(4x)+ 1,5xe^(4x)
ответ : C₁e^(2x) +C₂e^(4x)+ 1,5xe^(4x) .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
ay ' ' + by' + cy =0 ищем решение y= е^(kx) || ^ → степень ||
y ' = е^(kx) *(kx) ' =k*е^(kx) ; y '' =(y ' )'= (k*е^(kx) ) '=k*(е^(kx) ) '= k²*е^(kx) .
a*k²*е^(kx) + b*k*e^(kx)+c*e^(kx) =0 ;
е^(kx) * (ak² + bk +c) =0 ; е^(kx) ≠ 0 ⇒
a*k² + b*k + c = 0 ( характеристическое уравнение )
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Объяснение: