3) Путь - 98 км Х скорость от А до В Х + 7 скорость от В до А 7 - стоянка на обр. пути 98/Х время от А ло В (98/(Х+7) +7 Время от В до А
98Х = 98/(Х + 7) + 7; Общ. множ. Х(Х +7) 98Х + 686 = 98Х + 7Х^2+ 49Х; Сократив 98Х и разделив на 7 получим Х^2 + 7Х - 98 = 0; Решите уравнение и отбросте отрицательное значение Х
4) Пусть весь путь теплохода равен км. Время в пути составляет 30 часов, из которых 5 часов – стоянка:
.http://mathnet.spb.ru/rege.php?proto=996...
ответ: 616.
5)
Пусть х км/ч скорость яхты в неподвижной воде, тогда х+2 скорость яхты из А в В, х-2 скорость яхты из В в А.т.к. скорость течения =2 км/ч, значит скорость плота=2км/ч
120/(х+2)+120/(х-2)+1=24/2
120х-240+120х+240=11*(х+2)(x-2)
240х=(11х+22)(х-2)
240х=11x^2-22x+22х-44
240х=11x^2-44
11x^2-240х-44=0
х1=(240+кор.кв(57600+1936))/22=(240+244)/22=22
х2=(240-244)/22=-2/11 не удовлетвояряет условие задачи, значит не является решением.
Первый велосипедист догонит третьего через (30+х)/15 часов, где х - расстояние от п.в до места встречи. Или за х/9 часов. (30+х)/15=x/9 9(30+x)=15x 270+9x=15x 6x=270 x=45 (км) проедет 3-й велосипедист, пока его догонят.
30+45=75 (км) проедет 1-й велосипедист
75/15=5 часов - через столько 1-й догонит 3-го.
Теперь 2-й велосипедист. За 15 минут 3-й успел проехать 2,25 км, так что первоначальное расстояние между ними было 30+2,25=32,25 км. (32,25+y)/15=y/9 9(32,25+y)=15y 290,25+9y=15y 6y=290,25 y =48,375 (км) проехал 3-й велосипедист до встречи со 2-м велосипедистом
32,25+48,375=80,625 (км) проехал 2-й велосипедист
80,625/15=5,375 (ч) ехал 2-й
5,375-5=0,375 (ч) - интервал времени
это 0,375*60= 22,5 минуты Надо учесть первые 15 минут для 2-го велосипедиста, 22,5+15=37,5 мин
(2^3)^x+108=27•(2^2)^x+2^x•2^2
Сократить дробь
Вычислите степень
(2^х)³+108=27•(2^х)²+2^х•4
t³+108=27t²+4
t=27
t=-2
t=2
2^x=27
2^x=-2
2^x=2
решить уравнения
x=3log↓2(3)
x€/R
x=1
Найти объединение
х=1
х=3log↓2(3)
Окончательные решения
x↓1=1, x↓2=3log↓2(3)
Я думаю так и с объяснениями