Строим график и видим: максимум: 3, минимум при -2 или при 2, подстановкой видим минимум при -2, он равен -29. Альтернативное решение заключается в нахождении экстремумов функции при производных и рассматривании двух участков. Производную приравниваем к 0 для нахождения экстремумов кубической параболы: 3х^2-12х=0 х1=0 у1=0. А(0;0) х2=-4 у2=-157. В(-4;-157) На участке от -2 до 0: производная больше 0, функция возрастает. На участке от 0 до 2: производная меньше 0, функция убывает. Максимум при х=0 и у=3 Минимум либо при х=-2, либо при х=2. Подстановкой убеждаемся: минимум при х=-2, он равен -29. Этот позволяет построить график, который указан выше, но построение графика при этом аналитическом не необходимо.
Строим график и видим: максимум: 3, минимум при -2 или при 2, подстановкой видим минимум при -2, он равен -29. Альтернативное решение заключается в нахождении экстремумов функции при производных и рассматривании двух участков. Производную приравниваем к 0 для нахождения экстремумов кубической параболы: 3х^2-12х=0 х1=0 у1=0. А(0;0) х2=-4 у2=-157. В(-4;-157) На участке от -2 до 0: производная больше 0, функция возрастает. На участке от 0 до 2: производная меньше 0, функция убывает. Максимум при х=0 и у=3 Минимум либо при х=-2, либо при х=2. Подстановкой убеждаемся: минимум при х=-2, он равен -29. Этот позволяет построить график, который указан выше, но построение графика при этом аналитическом не необходимо.
(a² + ab + 3b²) + (2a² - ab - 2b²) = a² + ab + 3b² + 2a² - ab - 2b² = 3a²+b²
(x² + 2xy + y²) - (x² - 2xy + y²)= x² + 2xy + y² - x² + 2xy - y²= 4xy
3a(a²+7)= 3a³+21a
5 (3x - 4y) - 3 (5x - 2y) =15x-20y-15x+6y= -14y
7ac - 21xc =7c(a-3x)
(7x-3)/6 - (5x+1)/2= 0
7x-3-3(5x+1)=0
7x-3-15x-3=0
-8x-6=0
x= -0,75